DOI QR코드

DOI QR Code

Quasi-Static and Dynamic Torsional Deformation Behavior of API X70 and X80 Linepipe Steels

API X70 및 X80급 라인파이프강의 준정적 및 동적 비틀림 변형 거동

  • Kim, Yongjin (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ;
  • Kim, Yang Gon (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ;
  • Shin, Sang Yong (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials Pohang University of Science and Technology)
  • 김용진 (포항공과대학교 항공재료연구센터) ;
  • 김양곤 (포항공과대학교 항공재료연구센터) ;
  • 신상용 (포항공과대학교 항공재료연구센터) ;
  • 이성학 (포항공과대학교 항공재료연구센터)
  • Received : 2009.07.15
  • Published : 2010.01.20

Abstract

This study aimed at investigating quasi-static and dynamic torsional deformation behavior of three API X70 and X80 linepipe steels. Quasi-static and dynamic torsional tests were conducted on these steels. having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar. The test data were then compared via microstructures and adiabatic shear band formation,. The dynamic torsional test results indicated that the steels rolled in the single phase region had higher maximum shear stress than the steel rolled in the two phase region, because the microstructures of the steel rolled in the single phase region were composed mainly of acicular ferrites. In the X80 steel rolled in the single phase region, the increased dynamic torsional properties could be explained by a decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of adiabatic shear band formation was analyzed from the energy required for void initiation and variation in effective grain size.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. G. R. Murtagian, D. H. Johnson, and H. A. Ernst, Eng. Fracture Mechanics 72, 2519 (2005) https://doi.org/10.1016/j.engfracmech.2005.03.003
  2. F. Rivalin, A. Pineau, M. Di Fant, and J. Besson, Eng. Fracture Mechanics 68, 329 (2000) https://doi.org/10.1016/S0013-7944(00)00107-7
  3. G. Mannucci and D. Harris, Fracture Properties of API X100 Gas Pipeline steels, Final Report. 1, p.1-128, European Commission, Brussels, Belgium (2002)
  4. D. Horsley, Eng. Fracture Mechanics 70, 547 (2003) https://doi.org/10.1016/S0013-7944(02)00136-4
  5. E. Heier, Drop Weight Tear Testing of High Toughness Pipeline Material, Technial Report, Det Norske Veritas, Norway (2003)
  6. G. M. Wilkowski, W. A. Maxey, and R. J. Eiber. Can. Metall. Qly 19, 59 (1980) https://doi.org/10.1179/000844380795308786
  7. I. Tamura, H. Sckine, T. Tanaka and C. Ouchi, Thermomechanical processing of high-strength low-alloy steels, Butterworths & Co., Ltd. (1988)
  8. G. Demofonti, G. Buzzichelli, S. Venzi, and M. Kanninen, Pipeline Technology, Vol 512, Elservier, Amsterdam (1995)
  9. B. W. Choi, D. H. Seo, and J. Jang, Met. Mater. Int. 15, 373 (2009) https://doi.org/10.1007/s12540-009-0373-4
  10. S. Kim and S. Lee, Metall. Mater. Trans. A 31, 1753 (2000) https://doi.org/10.1007/s11661-998-0328-2
  11. K. M. Cho, S. Lee, S. Nutt, and J. Duffy, Acta Met. Mater. 41, 923 (1993) https://doi.org/10.1016/0956-7151(93)90026-O
  12. K. Cho, Y. C. Chi, and J. Duffy, Metall. Mater. Trans. A 21, 1161 (1990)
  13. D. K. Kim, S. Y. Kang, S. Lee, and K. J. Lee, Metall. Mater. Trans. A 30, 81 (1999) https://doi.org/10.1007/s11661-999-0197-3
  14. H. S. Lee, B. Hwang, S. Lee, C. G. Lee, and S. J. Kim, Metall. Mater. Trans. A 35, 2371 (2004) https://doi.org/10.1007/s11661-006-0217-5
  15. D. G. Lee, Y. G. Kim, D. H. Nam, S. M. Hur, and S. Lee, Mater. Sci. Eng. A 391, 221 (2005) https://doi.org/10.1016/j.msea.2004.08.076
  16. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez, Metall. Mater. Trans. A 34, 2505 (2003) https://doi.org/10.1007/s11661-003-0010-7
  17. R. Denys, Pipeline Technology, Vol. I & II, Elsevier, Amsterdam, Netherlands (2000)
  18. D. P. Fairchild, M. L. Macia, S. D. Papka, C. W. Petersen, J. H. Stevens, S. T. Barbas, N. V. Bangaru, J. Y. Koo, and M. J. Luton, Proc. Intern. Pipe Dreamer's Conf., p.307, Yokohama, Japan (2002)
  19. K. T. Corbett, R. R. Bowen, and C. W. Petersen, Int. J. Offshore Polar Eng. 14, 75 (2004)
  20. C. H. Lee, H. K. D. H. Bhadeshia, and H. C. Lee, Mater. Sci. Eng. A 360, 249(2003) https://doi.org/10.1016/S0921-5093(03)00477-5
  21. K. M. Wu and M. Enomoto, Scr. Mater. 46, 569 (2002) https://doi.org/10.1016/S1359-6462(02)00014-3
  22. B. L. Bramfiti and J. G. Speer, Metall. Trans. A 21, 817 (1990) https://doi.org/10.1007/BF02656565
  23. S. Y. Shin, B. Hwang, S. Lee, N. J. Kim, and S. S. Ahn, Mater. Sci. Eng. A 458, 281 (2007) https://doi.org/10.1016/j.msea.2006.12.097
  24. D. G. Lee, S. Lee, and C. S. Lee, Mater. Sci. Eng. A 366, 25 (2004) https://doi.org/10.1016/j.msea.2003.08.061
  25. Y. H. Pao and A. Gilat, Acta Metal. Mater. 40, 1271 (1992) https://doi.org/10.1016/0956-7151(92)90427-G
  26. S. Vaynman, M. E. Fine, S. Lee, and H. D. Espinosa, Scr. Mater. 55, 351 (2006) https://doi.org/10.1016/j.scriptamat.2006.04.029
  27. Y. M. Kim, S. K. Kim, Y. J. Lim, and N. J. Kim, ISIJ Int. 42, 1571 (2002) https://doi.org/10.2355/isijinternational.42.1571
  28. Y. Fukumoto, Engineering Structures 18, 786 (1996) https://doi.org/10.1016/0141-0296(96)00008-9
  29. M. A. Meyers, Y. B. Xu, Q. Xue, M. T. Perez-Prado, and T. R. Mcnelley, Acta Mater. 51, 1307 (2003) https://doi.org/10.1016/S1359-6454(02)00526-8
  30. S. Y. Shin, K. J. Woo, B. Hwang, S. Kim, and S. Lee J. Kor. Inst. Met. & Mater. 45, 447 (2007)
  31. D. G. Lee, Y. H. Lee, S. Lee, C. S. Lee, and S. M. Hur, Metall. Mater. Trans. A 35, 3103 (2004) https://doi.org/10.1007/s11661-004-0055-2
  32. D. G. Lee, S. Lee, C. S. Lee, and S. Hur, Metall. Mater. Trans. A 34, 2541 (2003) https://doi.org/10.1007/s11661-003-0013-4
  33. G. E. Dieter, Mechanical metallurgy, SI Metric Edition, p. 1, McGraw-Hill Book Co., Singapore (1988)