DOI QR코드

DOI QR Code

nm-수준의 상분리를 이용하여 제조한 고강도 고인성 철계 비정질 합금

Fe-based Amorphous Alloy with High Strength and Toughness Synthesized based on nm-scale Phase Separation

  • 이광복 (고려대학교 신소재공학부) ;
  • 박경원 (한국과학기술연구원 기능금속연구센터) ;
  • 이상호 (POSCO 제선연구그룹) ;
  • 이재철 (고려대학교 신소재공학부)
  • Lee, Kwang-Bok (Department of Materials Science and Engineering, Korea University) ;
  • Park, Kyoung-Won (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Yi, Sang-Ho (FINEX Group) ;
  • Lee, Jae-Chul (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2009.07.15
  • 발행 : 2010.01.20

초록

Experiments have demonstrated that the addition of a moderate amount of V to $Fe_{52}Co_{(20-x)}B_{20}Si_4Nb_4V_x$ amorphous alloy enhances the plasticity of the alloy. In particular, $Fe_{52}Co_{17.5}B_{20}Si_4Nb_4V_{2.5}$ alloy withstood a maximum of 8.3% strain prior to fracture along with a strength exceeding 4.7 GPa. Energy dispersive x-ray spectroscopy conducted on the $Fe_{52}Co_{17.5}B_{20}Si_4Nb_4V_{2.5}$ alloy exhibited evidence of compositional modulation, indicating that nm-scale phase separation had occurred at local regions. In this study, the role played by nm-scale phase separation on the plasticity was investigated in terms of structural disordering and shear localization in order to better understand the structural origin of the enhanced plasticity shown by the developed alloy.

키워드

과제정보

연구 과제 주관 기관 : 포스코

참고문헌

  1. A. Inoue, B. L. Shen, and C. T. Chang, Intermetallics 14, 936 (2006) https://doi.org/10.1016/j.intermet.2006.01.038
  2. A. Inoue, B. L. Shen, and C. T. Chang, Acta Mater:52, 4093 (2004) https://doi.org/10.1016/j.actamat.2004.05.022
  3. J. H. Yao, J. Q. Wang, and Y. Li, Appl. Phys. Lett. 92, 251906 (2008) https://doi.org/10.1063/1.2949747
  4. S. C. Lee, C. M. Lee, J. W. Yang, and J. C. Lee, J. Kor. Inst. Met. & Mater. 45, 545 (2007)
  5. Y. C. Kim, E. Fleury, J. C. Lee, and D. H. Kim, J. Mater. Res. 20, 2474 (2005) https://doi.org/10.1557/jmr.2005.0315
  6. W. F. Smith, Structure and properties of engineering alloys, 2nd edition p. 45-175 (1993)
  7. K. W. Park, C. M. Lee, M. Wakeda, Y. Shibutani, M. L. Falk, and J. C. Lee, Acta Mater: 56, 5440 (2008) https://doi.org/10.1016/j.actamat.2008.07.033
  8. S. C. Lee, C. M. Lee, J. C. Lee, J. S. Kim, Y. Shibutani, E. Fluery, and M. L. Falk, Appl. Phys. Lett. 92, 151906 (2008) https://doi.org/10.1063/1.2908218
  9. E. S. Park, D. H. Kim, T. Ohkubo, and K. Hono, Acta Mater. 54, 2597 (2006) https://doi.org/10.1016/j.actamat.2005.12.020
  10. K. H. Kim, S. W. Lee, J. P. Ahn, E. Fluery, Y. C. Kim, and J. C. Lee, Met. Mater. Int. 13, 21 (2007) https://doi.org/10.1007/BF03027818
  11. M. L. Falk, and J. S. Langer, Phys. Rev. E. 57, 7192 (1998) https://doi.org/10.1103/PhysRevE.57.7192
  12. M. L. Falk, Phys. Rev. B 60, 7062 (1999) https://doi.org/10.1103/PhysRevB.60.7062
  13. Y. Q. Cheng, A. J. Cao, H. W. Sheng, and E. Ma, Acta Mater. 56, 5263 (2008) https://doi.org/10.1016/j.actamat.2008.07.011
  14. S. C. Lee, M. H. Huh, H. J. Kim, and J. C. Lee, Mater. Sci. and Eng. 485, 61 (2008) https://doi.org/10.1016/j.msea.2007.08.068
  15. M. H. Lee, J. Y. Lee, D. H. Bae, W. T. Kim, D. J. Sordelet, and D. H. Kim, Intermetallics 12, 1133 (2004) https://doi.org/10.1016/j.intermet.2004.04.027
  16. B. L. Shen, A. Inoue, and C. T. Chang, Appl. Phys. Lett. 85, 4911 (2004) https://doi.org/10.1063/1.1827349
  17. S. W. Lee, M. Y. Huh, E. Fleury, and J. C. Lee, Acta Mater. 54, 349 (2006) https://doi.org/10.1016/j.actamat.2005.09.007
  18. J. C. Lee, K. W. Park, K. H. Kim, E. Fluery, B. J. Lee, M. Wakeda, and Y. Shibutani, J. Mater. Res. 22, 03087 (2007) https://doi.org/10.1557/jmr.2007.0382
  19. K. W. Park, C. M. Lee, M. R. Lee, E. Fleury, M. L. Falk, and J. C. Lee, Appl. Phys. Lett. 94, 021907 (2009) https://doi.org/10.1063/1.3064920
  20. M. Wakeda, Y. Shibutani, S. Ogata, and J. Y. Park, Intermetallics 15, 139 (2007) https://doi.org/10.1016/j.intermet.2006.04.002
  21. S. J. Lee, B. G. Yoo, J. I. Jang, and J. C. Lee, Met. Mater. Int. 14, 9 (2008) https://doi.org/10.3365/met.mat.2008.02.009
  22. K. W. Park, M. Wakeda, Y. Shibutani, E. Fleury, and J. C. Lee, Met. Mater. Int. 14, 159 (2008) https://doi.org/10.3365/met.mat.2008.04.159
  23. A. Slipenyuk and J. Eekert, Scr. Mater. 50, 39 (2004) https://doi.org/10.1016/j.scriptamat.2003.09.038
  24. A. Van den Beukel and J. Sietsma, Acta Mater. 38, 383(1990) https://doi.org/10.1016/0956-7151(90)90142-4
  25. R. Bhowmick, R. Raghavan, K. Chattopadhyay, and U. Ramamurty, Acta Mater. 54, 4221 (2006) https://doi.org/10.1016/j.actamat.2006.05.011
  26. Y. Q. Cheng, A. J. Cao, H. W. Sheng, and E. Ma, Acta Mater. 56, 5263 (2008) https://doi.org/10.1016/j.actamat.2008.07.011
  27. H. E. Kissinger, Analytical Chemistry 29, 1702 (1957) https://doi.org/10.1021/ac60131a045
  28. K. W. Park, C. M. Lee, E. Fleury, and J. C. Lee, Scr. Mater. 61, 363 (2009)