단일처리 후 LEDs 광도에 따른 절화국의 줄기 신장과 광합성반응

Stem Elongation and Photosynthesis Response of Cut Chrysanthemum under Different LEDs Light Intensity

  • 정성우 (네덜란드 와겐닝겐대학교)
  • Jeong, Sung-Woo (Dept. of Horticultural Supply Chains Group, Wageningen UR)
  • 투고 : 2010.08.09
  • 심사 : 2010.10.19
  • 발행 : 2010.10.31

초록

초장은 절화국의 외적 품질을 결정하는 매우 중요한 요소이다. 본 실험은 단일처리 후 광량의 차이에 따른 절화국화 광합성 효율과 줄기 신장에 미치는 영향을 알아보기 위하여 growth chamber내에서 수행되었다. 정식 7일 후 단일처리 (day/night, 11/13h)를 개시하였으며 이때 광량은 LEDs array (blue+red)를 이용하여 60, 100, 140, 그리고 $180mol{\cdot}m^{-2}{\cdot}s^{-1}$로 각각 유지하였다. 본 실험의 결과, 광도의 증가에 따른 순 광합성률은 꾸준히 증가하는 직선 회귀의 상관관계가 있었다. 광도의 차이가 꽃눈 분화의 시기에는 영향을 미치지 않았다. 초장, 엽면적, 그리고 건물중 등의 생육은 광도의 증가에 따라 증가 하였으나 140과 $180mol{\cdot}m^{-2}{\cdot}s^{-1}$에서는 처리 간 차이가 나타나지 않았다. 이상의 결과에서 LEDs array를 이용한 $140mol{\cdot}m^{-2}{\cdot}s^{-1}$이상의 광도는 절화국의 줄기 신장에 효과가 없는 것으로 판단되었으며 광도의 증가에 따른 순 광합성률의 증가가 생육의 증가와 일치하지는 않음을 알 수 있었다.

The control of stem length is most important external quality aspect in cut chrysanthemum. The present work in conducted in growth chamber and aims at investigating the effect of light intensity on the photosynthesis capacity and stem elongation in cut chrysanthemum. To evaluate the effect, different level of assimilation lighting (LEDs) was given to canopy level 60, 100, 140, and $180mol{\cdot}m^{-2}{\cdot}s^{-1}$, individually, under short-day conditions, and the light treatments were initiated from 7days after planting. There was a positive linear-regression relationship between the light intensity and the net assimilation rate. On the other hand, there was not significant difference in flower buds induction. The growth of stem length, leaf area, and dry weight was increased by increasing the light intensity, whereas the plants grown under 140 and $180mol{\cdot}m^{-2}{\cdot}s^{-1}$ was not differences in those of growth. It indicates that the increased net assimilation rate is not continually coincided with the maximized growth in cut chrysanthemum. It might be considered that the optimal light intensity for stem elongation of cut chrysanthemum is $140mol{\cdot}m^{-2}{\cdot}s^{-1}$ under short-day condition.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Carvalho, S. M. P., E. Heuvelimk, R. Cascais, and O. van Kooten. 2002. Effect of day and night temperature on internode and stem length in chrysanthemum: is everything explained by DIF? Ann. Bot. 90: 11-18. https://doi.org/10.1093/aob/mcf150
  2. Choi, Y. H., C. K. Ahn, J. S. Kang, B. G. Son, I. S. Choi, Y. C. Kim, Y. G. Lee, K. K. Kim, Y. G. Kim, and K. W. Son. 2003. Growth, photomorphogenesis, and photosynthesis of perilla grown under red, blue light emitting diodes and light intensities. J. Kor. Soc. Hort. Sci. 44: 281-286.
  3. Furuta, T. 1954. Photoperiod and flowering of chrysanthemum morifolium. Proceedings Amer. Soc. Hort. Sci. 63: 457-461.
  4. Karlsson, M. G. and R. D. Heins. 1994. A model of chrysanthemum stem elongation. J. Amer. Soc. Hort. Sci. 119: 403-407.
  5. Hicklenton, P. R. 1985. Influence of different levels and timing of supplemetal irradiation on pot chrysanthemum production. HortSci. 20: 374-376.
  6. Hisamatsu, T., K. Sumitomo, and H. Shimizu. 2008. End-of-day far-red treatment enhaces responsiveness to gibberellins and promotes stem extension in chrysanthemum. J. Hort. Sci. Biotech. 83: 695-700.
  7. Hogewoning, S. W., P. Douwstra, G. Trouwborst, W. van Ieperen, and J. Harbison. 2010a. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 61: 1267-1276. https://doi.org/10.1093/jxb/erq005
  8. Hogewoning, S. W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010b. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 61: 3107-3117. https://doi.org/10.1093/jxb/erq132
  9. Kim, H. H., G. D. Goins, R. M. Wheeler, and J. C. Sager. 2004. Green-light supplementation for enhanced lettuce growth under and blue-light emitting diodes. HortSci. 39: 1617-1622
  10. Lee, B. J., M. K. Won, D. H. Lee, and D. G. Shin. 2002. Photosynthesis and respiration of chrysanthemum (Dendrathema grandiflora Tzvelev) as influenced by light intensity and $CO_2$ levels. J. Kor. Hort. Sci. 43: 275-279.
  11. Lund, J. B., T. J. Blom, and J. M. Aaslyng. 2007. End-of-day lighting with different red/far-red ratios using light emitting diodes affect plant growth of Chrysanthemum ${\times}$ morifolium Ramat. 'Coral Charm'. HortSci. 42: 1609-1611.
  12. Salisbury, F. B., C. W. Ross. 1992. Plant physiology, 4th edition. Wadsworth Publishing Company, Belmont, California.