DOI QR코드

DOI QR Code

An Algorithm to Determine Aerosol Extinction Below Cirrus Cloud from Mie-LIDAR Signals

  • Wang, Zhenzhu (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Wu, Decheng (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Liu, Dong (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Zhou, Jun (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)
  • 투고 : 2010.09.03
  • 심사 : 2010.11.02
  • 발행 : 2010.12.25

초록

The traditional approach to inverting aerosol extinction makes use of the assumption of a constant LIDAR ratio in the entire Mie-LIDAR signal profile using the Fernald method. For the large uncertainty in the cloud optical depth caused by the assumed constant LIDAR ratio, an not negligible error of the retrieved aerosol extinction below the cloud will be caused in the backward integration of the Fernald method. A new algorithm to determine aerosol extinction below a cirrus cloud from Mie-LIDAR signals, based on a new cloud boundary detection method and a Mie-LIDAR signal modification method, combined with the backward integration of the Fernald method is developed. The result shows that the cloud boundary detection method is reliable, and the aerosol extinction below the cirrus cloud found by inverting from the modified signal is more efficacious than the one from the measured signal including the cloud-layer. The error due to modification is less than 10% taken in our present example.

키워드

참고문헌

  1. J. Zhou, G. Yue, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima, and T. Takamura, “LIDAR observation of Asian dust over Hefei, China, in spring 2000,” J. Geophys. Res. 107(D15), 4252-4259 (2002). https://doi.org/10.1029/2001JD000802
  2. J. Zhou, D. Liu, G. Yue, F. Qi, A. Fan, G. Shi, H. Cha, and D. Kim, “Vertical distribution and temporal variation of Asian dust observed over Hefei, China by using a LIDAR,” J. Korean Phys. Soc. 49, 320-326 (2006).
  3. Z. Wang, R. Chi, B. Liu, and J. Zhou, “Depolarization properties of cirrus clouds from polarization LIDAR measurements over Hefei in spring,” Chinese Optics Letters 6, 235-237 (2008). https://doi.org/10.3788/COL20080604.0235
  4. N. Sugimoto, A. Shimizu, and I. Matsui, “Study of dust transport using a network of continuously operated polarization LIDARs,” Water, Air, and Soil Pollution Focus 5, 145-157 (2005). https://doi.org/10.1007/s11267-005-0732-1
  5. E. J. Welton, J. R. Campbell, J. D. Spinhirne, and V. S. Scott, “Global monitoring of 22 clouds and aerosols using a network of micro-pulse LIDAR systems,” Proc. Internat. Soc. Opt. Eng. 4153, 151-158 (2001).
  6. D. J. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005). https://doi.org/10.1029/2005GL023507
  7. D. M. Winker, J. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne LIDAR for observation of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003). https://doi.org/10.1117/12.466539
  8. F. G. Fernald, “Analysis of atmospheric LIDAR observation: some comments,” Appl. Opt. 23, 652-653 (1984). https://doi.org/10.1364/AO.23.000652
  9. J. D. Klett, “Stable analytical inversion solution for processing LIDAR returns,” Appl. Opt. 20, 211-220 (1981). https://doi.org/10.1364/AO.20.000211
  10. Y. M. Noh, Y. J. Kim, B. C. Choi, and T. Murayama, “Aerosol LIDAR ratio characteristics measured by a multiwavelength Raman LIDAR system at Anmyeon Island, Korea,” Atmospheric Research 86, 76-87 (2007). https://doi.org/10.1016/j.atmosres.2007.03.006
  11. W. Chen, C. Chiang, and J. Nee, “LIDAR ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470-6476 (2002). https://doi.org/10.1364/AO.41.006470
  12. C. Xie, J. Zhou, N. Sugimoto, and Z. Wang, “Aerosol observation with Raman LIDAR in Beijing, China,” J. Opt. Soc. Korea 14, 215-220 (2010). https://doi.org/10.3807/JOSK.2010.14.3.215
  13. S. R. Pal, W. Steinbrecht, and A. I. Carswell, “Automated method for LIDAR determination of cloud-base height and vertical extent,” Appl. Opt. 31, 1488-1494 (1992). https://doi.org/10.1364/AO.31.001488
  14. K. Sassen and B. S. Cho, “Subvisual–thin cirrus LIDAR dataset for satellite verification and climatological research,” J. Appl. Meteor. 31, 1275-1285 (1992). https://doi.org/10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2
  15. D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia, observed by LIDAR under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34, 117-133 (1994). https://doi.org/10.1016/0169-8095(94)90084-1
  16. S. A. Young, “Analysis of LIDAR backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019-7031 (1995). https://doi.org/10.1364/AO.34.007019
  17. J. R. Campbell, D. L. Hlavka, J. D. Spinhirne, D. D. Turner, and C. J. Flynn, “Operational cloud boundary detection and analysis from micro pulse LIDAR data,” in Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting (Tucson, AZ, USA, 1998), pp. 119-122.
  18. K. Sassen and Z. Wang, “The need for a universal cloud property algorithm for active remote sensors,” in Proc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting (San Antonio, TX, USA, 1999), pp. 169-173.
  19. Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteor. 40, 1665-1682 (2001). https://doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2
  20. Z. Wang, D. Liu, J. Zhou, and Y. Wang, “Experimental determination of the calibration factor of polarization-Mie LIDAR,” Optical Review 16, 566-570 (2009). https://doi.org/10.1007/s10043-009-0111-7

피인용 문헌

  1. An Iterative Algorithm to Estimate LIDAR Ratio for Thin Cirrus Cloud over Aerosol Layer vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.209