References
- Won YJ, Sung JH, Jung KW, Kong HJ, Park SH, Shin HR, et al. Nationwide cancer incidence in Korea, 2003-2005. Cancer Res Treat 2009;41:122-131 https://doi.org/10.4143/crt.2009.41.3.122
- Kang TJ, Song CR, Song GH, Shin GH, Shin DI, Kim CS, et al. The anatomic distribution and pathological characteristics of prostate cancer: a mapping analysis. Korean J Urol 2006;47:578-585 https://doi.org/10.4111/kju.2006.47.6.578
- Hull GW, Rabbani F, Abbas F, Wheeler TM, Kattan MW, Scardino PT. Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J Urol 2002;167:528-534 https://doi.org/10.1016/S0022-5347(01)69079-7
- Koh H, Kattan MW, Scardino PT, Suyama K, Maru N, Slawin K, et al. A nomogram to predict seminal vesicle invasion by the extent and location of cancer in systematic biopsy results. J Urol 2003;170:1203-1208 https://doi.org/10.1097/01.ju.0000085074.62960.7b
- Sala E, Akin O, Moskowitz CS, Eisenberg HF, Kuroiwa K, Ishill NM, et al. Endorectal MR imaging in the evaluation of seminal vesicle invasion: diagnostic accuracy and multivariate feature analysis. Radiology 2006;238:929-937 https://doi.org/10.1148/radiol.2383050657
- Jung DC, Lee HJ, Kim SH, Choe GY, Lee SE. Preoperative MR imaging in the evaluation of seminal vesicle invasion in prostate cancer: pattern analysis of seminal vesicle lesions. J Magn Reson Imaging 2008;28:144-150 https://doi.org/10.1002/jmri.21422
- Ikonen S, Karkkainen P, Kivisaari L, Salo JO, Taari K, Vehmas T, et al. Endorectal magnetic resonance imaging of prostatic cancer: comparison between fat-suppressed T2-weighted fast spin echo and three-dimensional dual-echo, steady-state sequences. Eur Radiol 2001;11:236-241 https://doi.org/10.1007/s003300000598
- Ikonen S, Karkkainen P, Kivisaari L, Salo JO, Taari K, Vehmas T, et al. Magnetic resonance imaging of clinically localized prostatic cancer. J Urol 1998;159:915-919 https://doi.org/10.1016/S0022-5347(01)63770-4
- Rorvik J, Halvorsen OJ, Albrektsen G, Ersland L, Daehlin L, Haukaas S. MRI with an endorectal coil for staging of clinically localized prostate cancer prior to radical prostatectomy. Eur Radiol 1999;9:29-34 https://doi.org/10.1007/s003300050622
- Schiebler ML, Yankaskas BC, Tempany C, Spritzer CE, Rifkin MD, Pollack HM, et al. MR imaging in adenocarcinoma of the prostate: interobserver variation and efficacy for determining stage C disease. AJR Am J Roentgenol 1992;158:559-562 https://doi.org/10.2214/ajr.158.3.1738994
- Park BK, Kim BH, Kim CK, Lee HM, Kwon GY. Comparison of phased-array 3.0-T and endorectal 1.5-T magnetic resonance imaging in the evaluation of local staging accuracy for prostate cancer. J Comput Assist Tomogr 2007;31:534-538 https://doi.org/10.1097/01.rct.0000250108.85799.e1
- Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol 2004;11:857-862 https://doi.org/10.1016/j.acra.2004.04.013
- Torricelli P, Cinquantini F, Ligabue G, Bianchi G, Sighinolfi P, Romagnoli R. Comparative evaluation between external phased array coil at 3T and endorectal coil at 1.5T: preliminary results. J Comput Assist Tomogr 2006;30:355-361 https://doi.org/10.1097/00004728-200605000-00002
- Suzuki H, Komiya A, Kamiya N, Imamoto T, Kawamura K, Miura J, et al. Development of a nomogram to predict probability of positive initial prostate biopsy among Japanese patients. Urology 2006;67:131-136 https://doi.org/10.1016/j.urology.2005.07.040
- Snow PB, Smith DS, Catalona WJ. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J Urol 1994;152:1923-1926 https://doi.org/10.1016/S0022-5347(17)32416-3
- Stephan C, Cammann H, Semjonow A, Diamandis EP, Wymenga LF, Lein M, et al. Multicenter evaluation of an artificial neural network to increase the prostate cancer detection rate and reduce unnecessary biopsies. Clin Chem 2002;48:1279-1287
- Walz J, Graefen M, Chun FK, Erbersdobler A, Haese A, Steuber T, et al. High incidence of prostate cancer detected by saturation biopsy after previous negative biopsy series. Eur Urol 2006;50:498-505 https://doi.org/10.1016/j.eururo.2006.03.026
- Nam RK, Toi A, Klotz LH, Trachtenberg J, Jewett MA, Appu S, et al. Assessing individual risk for prostate cancer. J Clin Oncol 2007;25:3582-3588 https://doi.org/10.1200/JCO.2007.10.6450
- Bianco FJ Jr. Nomograms and medicine. Eur Urol 2006;50:884-886 https://doi.org/10.1016/j.eururo.2006.07.043
- Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995;20:273-297
- Vapnik V. The nature of statistical learning theory. Berlin: Springer, 2000:123-160
- Comak E, Arslan A, Turkoglu I. A decision support system based on support vector machines for diagnosis of the heart valve diseases. Comput Biol Med 2007;37:21-27 https://doi.org/10.1016/j.compbiomed.2005.11.002
- Blute ML, Bergstralh EJ, Iocca A, Scherer B, Zincke H. Use of Gleason score, prostate specific antigen, seminal vesicle and margin status to predict biochemical failure after radical prostatectomy. J Urol 2001;165:119-125 https://doi.org/10.1097/00005392-200101000-00030
- Epstein JI, Partin AW, Potter SR, Walsh PC. Adenocarcinoma of the prostate invading the seminal vesicle: prognostic stratification based on pathologic parameters. Urology 2000;56:283-288 https://doi.org/10.1016/S0090-4295(00)00640-3
- Salomon L, Anastasiadis AG, Johnson CW, McKiernan JM, Goluboff ET, Abbou CC, et al. Seminal vesicle involvement after radical prostatectomy: predicting risk factors for progression. Urology 2003;62:304-309 https://doi.org/10.1016/S0090-4295(03)00373-X
- Vapnik V. Statistical learning theory, wiley series on adaptive and learning systems for signal processing, communications and control. New York: John Wiley & Sons, 1998
- Duda RO, Peter EH, David GS. Pattern classification. 2nd ed. New York: Wiley-Interscience publication, 2001
- Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press, 2000:93-122
- Byvatov E, Fechner U, Sadowski J, Schneider G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 2003;43:1882-1889 https://doi.org/10.1021/ci0341161
- Hearst M. Trends and controversies-support vector machines. IEEE Intelligent Systems 1998;13:18-28
- Beyersdorff D, Taymoorian K, Knosel T, Schnorr D, Felix R, Hamm B, et al. MRI of prostate cancer at 1.5 and 3.0T: comparison of image quality in tumor detection and staging. AJR Am J Roentgenol 2005;185:1214-1220 https://doi.org/10.2214/AJR.04.1584