DOI QR코드

DOI QR Code

In-plane vibrations of cracked slightly curved beams

  • Oz, H. Ridvan (Department of Genetics and Bioengineering, Engineering Faculty, Fatih University)
  • 투고 : 2009.10.21
  • 심사 : 2010.08.10
  • 발행 : 2010.12.20

초록

In-plane vibrations of slightly curved beams having cracks are investigated numerically and experimentally. The curvature of the beam is circular and stays in the plane of vibration. Specimens made of steel with different lengths but with the same radius of curvature are used in the experiments. Cracks are opened using a hand saw having 0.4 mm thickness. Natural frequencies depending on location and depth of the cracks are determined using a Bruel & Kjaer 4366 type accelerometer. Then the beam is assumed as a Rayleigh type slightly curved beam in finite element method (FEM) including bending, extension and rotary inertia. A flexural rigidity equation given in literature for straight beams having a crack is used in the analysis. Frequencies are obtained numerically for different crack locations and depths. Experimental results are presented and compared with the numerical solutions. The natural frequencies are affected too much due to larger moments when the crack is around nodes. The effect can be neglected when it is at the location of maximum displacements. When the crack is close to the clamped end, the decrease in the frequencies in all modes is very high. The consistency of the results and validity of the equations are discussed.

키워드

참고문헌

  1. Alves, S.W. and Hall, J.F. (2006), "System identification of a concrete arch dam and calibration of its finite element model", Earthq. Eng. Struct. Dyn., 35(11), 1321-1337. https://doi.org/10.1002/eqe.575
  2. Andrasic, C.P. and Parker, A.P. (1980), "Weight functions for cracked, curved beams", Eds. Owen, D.R.F., Luxmoore, A.R., Numerical Methods in Fracture Mechanics, Swansea, 67-82.
  3. Bovsunovsky, A.P. and Matveev, V.V. (2000), "Analytical approach to the determination of dynamic characteristics of a beam with a closing crack", J. Sound Vib., 235(3), 415-434. https://doi.org/10.1006/jsvi.2000.2930
  4. Cerri, M.N., Dilena, M. and Ruta, G.C. (2008), "Vibration and damage detection in undamaged and cracked circular arches: Experimental and analytical results", J. Sound Vib., 314, 83-94. https://doi.org/10.1016/j.jsv.2008.01.029
  5. Cerri, M.N. and Ruta, G.C. (2004), "Detection of localized damage in plane circular arches by frequency data", J. Sound Vib., 270, 39-59.
  6. Chidamparam, P. and Leissa, A.W. (1995), "Influence of centerline extensibility on the in-plane free vibrations of loaded circular arches", J. Sound Vib., 183(5), 779-795. https://doi.org/10.1006/jsvi.1995.0286
  7. Chondros, T.G., Dimarogonas, A.D. and Yao, J. (1998), "A continuous cracked beam vibration theory", J. Sound Vib., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640
  8. De Rosa, M.A. and Franciosi, C. (2000), "Exact and approximate dynamic analysis of circular arches using DQM", Int. J. Solids Struct., 37, 1103-1117. https://doi.org/10.1016/S0020-7683(98)00275-3
  9. Fernandez-Sáez, J., Rubio, L. and Navarro, C. (1999), "Approximate calculation of the fundamental frequency for bending vibrations of cracked beams", J. Sound Vib., 225(2), 345-352. https://doi.org/10.1006/jsvi.1999.2251
  10. Ibrahimbegovic, A. (1995), "On finite element implementation of geometrically nonlinear Reissner's beam theory: three dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122, 11-26. https://doi.org/10.1016/0045-7825(95)00724-F
  11. Kapp, J.A., Newman, Jr, J.C. and Underwood, J.H. (1980), "A wide range stress intensity factor expression for the C-shaped specimen", J. Test Eval., JTEVA, 8(6), 314-317. https://doi.org/10.1520/JTE10631J
  12. Kang, K. and Bert, C.W. (1997), "Flexural-torsional buckling analysis of arches with warping using DQM", Eng. Struct., 19(3), 247-254. https://doi.org/10.1016/S0141-0296(96)00057-0
  13. Khan, A.K. and Pise, P.J. (1997), "Dynamic behaviour of curved piles", Comput. Struct., 65(6), 795-807. https://doi.org/10.1016/S0045-7949(97)00043-6
  14. Khiem, N.T. and Lien, T.V. (2001), "A simplified method for natural frequency analysis of a multiple cracked beam", J. Sound Vib., 245(4), 737-751. https://doi.org/10.1006/jsvi.2001.3585
  15. Kisa, M., Brandon, J. and Topçu, M. (1998), "Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods", Comput. Struct., 67, 215-223. https://doi.org/10.1016/S0045-7949(98)00056-X
  16. Krawczuk, M. and Ostachowicz, W.M. (1997), "Natural vibrations of a clamped-clamped arch with an open transverse crack", J. Vib. Acoust., 119, 145-151. https://doi.org/10.1115/1.2889695
  17. Krishnan, A., Dharmaraj, S. and Suresh, Y.J. (1995), "Free vibration studies of arches", J. Sound Vib., 186(5), 856-863.
  18. Krishnan, A. and Suresh, Y.J. (1998), "A simple cubic linear element for static and free vibration analyses of curved beams", Comput. Struct., 68, 473-489. https://doi.org/10.1016/S0045-7949(98)00091-1
  19. Love, A.E.H. (1944), Treatise on the Mathematical Theory of Elasticity, 4th Edition, Dover, NY.
  20. Muller, W.H., Herrmann, G. and Gao, H. (1993), "A note on curved cracked beams", Int. J. Solids Struct., 30(11), 1527-1532. https://doi.org/10.1016/0020-7683(93)90076-J
  21. Nobile, L. (2000), "Mixed mode crack initiation and direction in beams with edge crack", Theoret. Appl. Fracture Mech., 33, 107-116. https://doi.org/10.1016/S0167-8442(00)00006-9
  22. Nobile, L. (2001), "Mixed mode crack growth in curved beams with radial edge crack", Theoreti. Appl. Fract. Mech., 36, 61-72. https://doi.org/10.1016/S0167-8442(01)00057-X
  23. Oh, S.J., Lee, B.K. and Lee, I.W. (2000), "Free vibrations of non-circular arches with non-uniform crosssection", Int. J. Solids Struct., 37, 4871-4891. https://doi.org/10.1016/S0020-7683(99)00194-8
  24. Oz, H.R. and Da , M.T. (2006), "In-plane vibrations of circular curved beams with a transverse open crack", Mathem. Comput.Appl., 11(1), 1-10.
  25. Oz, H.R. and Ozkaya, E. (2005), "Three-to-one internal resonances in a curved beam resting on an elastic foundation", Int. J. Appl. Mech. Eng., 10(4) 667-678.
  26. Oz, H.R., Pakdemirli, M., Ozkaya, E. and Y lmaz, M. (1998), "Nonlinear vibrations of a slightly curved beam resting on a nonlinear elastic foundation", J. Sound Vib., 212(2) 295-309. https://doi.org/10.1006/jsvi.1997.1428
  27. Oz, H.R. and Pakdemirli, M. (2006), "Two-to-one internal resonances in a shallow curved beam resting on an elastic foundation", Acta Mech., DOI 10.1007/s00707-006-0352-5.
  28. Ozyi it, H.A., Oz, H.R. and Tekelioglu, M. (2004), "Linear forced in-plane and out-of-plane vibrations of frames having a curved member", Mathem. Comput. Appl., 9, 371-380.
  29. Petyt, M. (1990), Introduction to Finite Element Vibration Analysis, Cambridge University Press, U.K.
  30. Raveendranath, P., Singh, G. and Pradhan, B. (2000), "Free vibration of arches using a curved beam element based on a coupled polynomial displacement field", Comput. Struct., 78, 583-590. https://doi.org/10.1016/S0045-7949(00)00038-9
  31. Saavedra, P.N. and Cuitino, L.A. (2001), "Crack detection and vibration behavior of cracked beams", Comput. Struct., 79, 1451-1459. https://doi.org/10.1016/S0045-7949(01)00049-9
  32. Tong, X., Mrad, N. and Tabarrok, B. (1998), "In-plane vibration of circular arches with variable cross-sections", J. Sound Vib., 212(1), 121-140. https://doi.org/10.1006/jsvi.1997.1441
  33. Tracy, P.G. (1975), "Analysis of a radial crack in a circular ring segment", Eng. Fract. Mech., 7, 253-260. https://doi.org/10.1016/0013-7944(75)90006-5
  34. Tufekçi, E. and Arpac , A. (1998), "Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects", J. Sound Vib., 209(5), 845-856. https://doi.org/10.1006/jsvi.1997.1290
  35. Viola, E., Artioli, E. and Dilena, M. (2005), "Analytical and differential quadrature results for vibration analysis of damaged circular arches", J. Sound Vib., 288, 887-906. https://doi.org/10.1016/j.jsv.2005.01.027
  36. Viola, E., Dilena, M. and Tornabene, F. (2007), "Analytical and numerical results for vibration analysis of multistepped and multi-damaged circular arches", J. Sound Vib., 299, 143-163. https://doi.org/10.1016/j.jsv.2006.07.001
  37. Viola, E. and Tornabene, F. (2005), "Vibration analysis of damaged circular arches with varying cross-section", Tech Science Press, SID, 1(2), 155-169.
  38. Walsh, S.J. and White, R.G. (1999), "Mobility of a semi-infinite beam with constant curvature", J. Sound Vib., 221(5), 887-902. https://doi.org/10.1006/jsvi.1998.2086
  39. Yaghin, M.A.L. and Hesari, M.A. (2008), "Using wavelet analysis in crack detection at the arch concrete dam under frequency analysis with FEM", J. Wavel. Theor. Appl., 2(1), 61-81.
  40. Yang, X.F., Swamidas, A.S.J. and Seshadri, R. (2001), "Crack identification in vibrating beams using the energy method", J. Sound Vib., 244(2), 339-357. https://doi.org/10.1006/jsvi.2000.3498
  41. Zheng, D.Y. and Kessissoglou, N.J. (2004), "Free vibration analysis of a cracked beam by finite element method", J. Sound Vib., 273, 457-475. https://doi.org/10.1016/S0022-460X(03)00504-2
  42. Geradin, M. and Rixen, D. (1997), Mechanical Vibrations, Theory and Application to Structural Dynamics, 2nd Edition, John Wiley & Sons Ltd., Eastbourne, GB.

피인용 문헌

  1. Exact solution for free vibration of curved beams with variable curvature and torsion vol.47, pp.3, 2013, https://doi.org/10.12989/sem.2013.47.3.345
  2. Crack modeling and identification in curved beams using differential evolution vol.131-132, 2017, https://doi.org/10.1016/j.ijmecsci.2017.07.014
  3. A statistics and optimization-based approach for crack parameter identification in curved beams 2018, https://doi.org/10.1177/1475921717732026
  4. Modal characteristics of cracked thin walled unsymmetrical cross-sectional steel beams curved in plan vol.108, 2016, https://doi.org/10.1016/j.tws.2016.08.006
  5. Vibration analysis of a cracked beam with axial force and crack identification vol.9, pp.4, 2010, https://doi.org/10.12989/sss.2012.9.4.355
  6. Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators vol.95, pp.3, 2010, https://doi.org/10.1007/s11071-018-4697-9