참고문헌
- Ambartsumyan, S.A. (1986), Elasticity Theory of Different Moduli (Wu, R.F. and Zhang, Y.Z. trans.), China Railway Publishing House, Beijing, China.
- Bert, C.W. (1977), "Models for fibrous composites with different properties in tension and compression", J. Eng. Mater-T. ASME., 99(4), 344-349. https://doi.org/10.1115/1.3443550
- Bert, C.W. and Gordaninejad, F. (1983), "Transverse effects in bimodular composite laminates", J. Compos. Mater., 17(4), 282-298. https://doi.org/10.1177/002199838301700401
- Cai, L.S. and Yu, H.R. (2009), "Constitutive relation of elastic materials with different elastic moduli in tension and compression", J. Xi'an Univ. Sci. Technol., 29(1), 17-21.
- Greco, F. (2009), "Homogenized mechanical behavior of composite micro-structures including micro-cracking and contact evolution", Eng. Fract. Mech., 76(2), 182-208. https://doi.org/10.1016/j.engfracmech.2008.09.006
- He, X.T., Chen, S.L. and Sun, J.Y. (2007a), "Applying the equivalent section method to solve beam subjected lateral force and bending-compression column with different moduli", Int. J. Mech. Sci., 49(7), 919-924. https://doi.org/10.1016/j.ijmecsci.2006.11.004
- He, X.T., Chen, S.L. and Sun, J.Y. (2007b), "Elasticity solution of simple beams with different modulus under uniformly distributed load", Chinese J. Eng. Mech., 24(10), 51-56.
- He, X.T., Zheng, Z.L., Sun, J.Y., Li, Y.M. and Chen, S.L. (2009), "Convergence analysis of a finite element method based on different moduli in tension and compression", Int. J. Solids Struct., 46(20), 3734-3740. https://doi.org/10.1016/j.ijsolstr.2009.07.003
- Jones, R.M. (1976), "Apparent flexural modulus and strength of multimodulus materials", J. Compos. Mater., 10(4), 342-354. https://doi.org/10.1177/002199837601000407
- Jones, R.M. (1977), "Stress-strain relations for materials with different moduli in tension and compression", AIAA J., 15(1), 16-23. https://doi.org/10.2514/3.7297
- Li, L.Y. (1990), "The rationalism theory and its finite element analysis method of shell structures", Appl. Math. Mech. (English edition), 11(4), 395-402. https://doi.org/10.1007/BF02015123
- Liu, X.B. and Zhang, Y.Z. (2000), "Modulus of elasticity in shear and accelerate convergence of different extension-compression elastic modulus finite element method", J. Dalian Univ. Technol., 40(5), 527-530.
- Patel, B.P., Lele, A.V., Ganapathi, M., Gupta, S.S. and Sambandam, C.T. (2004), "Thermo-flexural analysis of thick laminates of bimodulus composite materials", Compos. Struct., 63(1), 11-20. https://doi.org/10.1016/S0263-8223(03)00120-X
- Patel, B.P., Gupta, S.S. and Sarda, R. (2005), "Free flexural vibration behavior of bimodular material angle-ply laminated composite plates", J. Sound Vib., 286(1-2), 167-186. https://doi.org/10.1016/j.jsv.2004.10.004
- Khan, K., Patel, B.P. and Nath, Y. (2009), "Vibration analysis of bimodulus laminated cylindrical panels", J. Sound Vib., 321(1-2), 166-183. https://doi.org/10.1016/j.jsv.2008.09.017
- Reddy, J.N. and Chao, W.C. (1983), "Nonlinear bending of bimodular-material plates", Int. J. Solids Struct., 19(3), 229-237. https://doi.org/10.1016/0020-7683(83)90059-8
- Shin, K.J., Lee, K.M. and Chang, S.P. (2008), "Numerical modeling for cyclic crack bridging behavior of fiber reinforced cementitious composites", Struct. Eng. Mech., 30(2), 147-164. https://doi.org/10.12989/sem.2008.30.2.147
- Srinivasan, R.S. and Ramachandra, L.S. (1989), "Large deflection analysis of bimodulus annular and circular plates using finite elements", Comput. Struct., 31(5), 681-691. https://doi.org/10.1016/0045-7949(89)90202-2
- Yang, H.T., Yang, K.J. and Wu, R.F. (1999), "Solution of 3-D elastic dual extension compression modulus problems using initial stress technique", J. Dalian Univ. Technol., 39(4), 478-482.
- Yang, H.T. and Zhu, Y.L. (2006), "Solving elasticity problems with bi-modulus via a smoothing technique", Chinese J. Comput. Mech., 23(1), 19-23.
- Yang, H.T. and Wang, B. (2008), "An analysis of longitudinal vibration of bimodular rod via smoothing function approach", J. Sound Vib., 317(3-5), 419-431. https://doi.org/10.1016/j.jsv.2008.03.060
- Yao, W.J. and Ye, Z.M. (2004a), "Analytical solution of bending-compression column using different tensioncompression modulus", Appl. Math. Mech. (English edition), 25(9), 983-993. https://doi.org/10.1007/BF02438347
- Yao, W.J. and Ye, Z.M. (2004b), "Analytical solution for bending beam subject to lateral force with different modulus", Appl. Math. Mech. (English edition), 25(10), 1107-1117. https://doi.org/10.1007/BF02439863
- Yao, W.J. and Ye, Z.M. (2004c), "The analytical and numerical solution of retaining wall based on elastic theory of different modulus", J. Shanghai Jiaotong Univ., 38(6), 1022-1027.
- Yao, W.J. and Ye, Z.M. (2006), "Internal forces for statically indeterminate structures having different moduli in tension and compression", J. Eng. Mech.-ASCE, 132(7), 739-746. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:7(739)
- Yao, W.J., Zhang, C.H. and Jiang, X.F. (2006), "Nonlinear mechanical behavior of combined members with different moduli", Int. J. Nonlin. Sci. Numer. Simul., 7(2), 233-238. https://doi.org/10.1515/IJNSNS.2006.7.2.233
- Ye, Z.M. (1997), "A new finite formulation for planar elastic deformation", Int. J. Numer. Meth. Eng., 14(40), 2579-2592.
- Ye, Z.M., Chen, T. and Yao, W.J. (2004), "Progresses in elasticity theory with different modulus in tension and compression and related FEM", Chinese J. Mech. Eng., 26(2), 9-14.
- Zhang, Y.Z. and Wang, Z.F. (1989), "Finite element method of elasticity problem with different tension and compression moduli", Chinese J. Comput. Struct. Mech. Appl., 6(1), 236-245.
- Zinno, R. and Greco, F. (2001), "Damage evolution in bimodular laminated composites under cyclic loading", Compos. Struct., 53(4), 381-402. https://doi.org/10.1016/S0263-8223(01)00048-4
피인용 문헌
- Application of a biparametric perturbation method to large-deflection circular plate problems with a bimodular effect under combined loads vol.420, pp.1, 2014, https://doi.org/10.1016/j.jmaa.2014.05.016
- Thermal Stress Analysis for Bi-modulus Foundation Beam under Nonlinear Temperature Difference vol.14, pp.01, 2017, https://doi.org/10.1142/S0219876217500244
- Simplified theory and analytical solution for functionally graded thin plates with different moduli in tension and compression vol.74, 2016, https://doi.org/10.1016/j.mechrescom.2016.04.006
- Analytical Solutions for Bending Curved Beams with Different Moduli in Tension and Compression vol.22, pp.5, 2015, https://doi.org/10.1080/15376494.2012.736053
- Large-deflection axisymmetric deformation of circular clamped plates with different moduli in tension and compression vol.62, pp.1, 2012, https://doi.org/10.1016/j.ijmecsci.2012.06.003
- Temperature stress analysis for bi-modulus beam placed on Winkler foundation vol.38, pp.7, 2017, https://doi.org/10.1007/s10483-017-2216-6
- A perturbation solution of von-Kármán circular plates with different moduli in tension and compression under concentrated force vol.23, pp.3, 2016, https://doi.org/10.1080/15376494.2014.981615
- Analytical solution for a flexural bimodulus beam vol.6, pp.2, 2017, https://doi.org/10.1680/jemmr.15.00081
- General perturbation solution of large-deflection circular plate with different moduli in tension and compression under various edge conditions vol.55, 2013, https://doi.org/10.1016/j.ijnonlinmec.2013.05.008
- Elastic solutions of a functionally graded cantilever beam with different modulus in tension and compression under bending loads vol.38, pp.4, 2014, https://doi.org/10.1016/j.apm.2013.08.021
- Numerical Analysis on Bending Deep Beams with Different Moduli in Tension and Compression vol.446-449, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.446-449.807
- An Elastic Solution of a Functionally Graded Cantilever Beam with Different Modulus in Tension and Compression under Uniform Pressure vol.717, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.717.396
- Analytical and numerical study of temperature stress in the bi-modulus thick cylinder vol.64, pp.1, 2010, https://doi.org/10.12989/sem.2017.64.1.081
- Bending analysis of functionally graded curved beams with different properties in tension and compression vol.89, pp.9, 2019, https://doi.org/10.1007/s00419-019-01555-8
- Large Deformation Problem of Bimodular Functionally-Graded Thin Circular Plates Subjected to Transversely Uniformly-Distributed Load: Perturbation Solution without Small-Rotation-Angle Assumption vol.9, pp.18, 2021, https://doi.org/10.3390/math9182317
- Application of Variational Method to Stability Analysis of Cantilever Vertical Plates with Bimodular Effect vol.14, pp.20, 2010, https://doi.org/10.3390/ma14206129