DOI QR코드

DOI QR Code

A discrete particle model for reinforced concrete fracture analysis

  • Azevedo, N. Monteiro (LNEC) ;
  • Lemos, J.V. (LNEC) ;
  • Almeida, J.R. (Department of Civil Engineering, Faculdade de Ciencias e Tecnologia, UNL)
  • 투고 : 2009.08.20
  • 심사 : 2010.06.27
  • 발행 : 2010.10.20

초록

The Discrete Element Method adopting particles for the domain discretization has recently been adopted in fracture studies of non-homogeneous continuous media such as concrete and rock. A model is proposed in which the reinforcement is modelled by 1D rigid-spring discrete elements. The rigid bars interact with the rigid circular particles that simulate the concrete through contact interfaces. The DEM enhanced model with reinforcement capabilities is evaluated using three point bending and four point bending tests on reinforced concrete beams without stirrups. Under three point bending, the model is shown to reproduce the expected final crack pattern, the crack propagation and the load displacement diagram. Under four point bending, the model is shown to match the experimental ultimate load, the size effect and the crack propagation and localization.

키워드

참고문헌

  1. ASCE Committee on Concrete and Masonry Structures (1981), Finite element analysis of reinforced concrete, Task Committee on Finite Element Analysis of Reinforced Concrete Structures of the Structural Division Committee on Concrete and Masonry Structures, ASCE Special Publication.
  2. Bazant, Z. (1986), "Mechanics of distributed cracking", Appl. Mech. Rev., ASME, 4(5), 675-705.
  3. Bazant, Z. and Kazemi, M.T. (1991), "Size effect on diagonal shear failure of beams without stirrups", ACIStruct. J., 88, 268-276.
  4. Berton, S. and Bolander, J.E. (2006), "Crack band model of fracture in irregular lattices", Comput. Meth. Appl. Mech. Eng., 195, 7172-7181. https://doi.org/10.1016/j.cma.2005.04.020
  5. Bolander, J.E. and Le, B. (1999), "Modeling crack development in reinforced concrete structures under service loading", Constr. Build. Mater., 13, 23-31. https://doi.org/10.1016/S0950-0618(99)00005-7
  6. Bosco, C., Carpinteri, A. and Debenardi, P. (1990), "Minimum reinforcement in high strength concrete", J. Struct. Eng., 116, 427-437. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(427)
  7. Comite Euro International du Beton (1990), CEB-FIP Model Code 1990, First Draft, CEB, Paris.
  8. Caballero, C., Lopez, C.M. and Carol, I. (2006), "3D meso-structural analyis of concrete specimens under uniaxial tension", Comput. Meth. Appl. Mech. Eng., 195, 7182-7195. https://doi.org/10.1016/j.cma.2005.05.052
  9. Chen, G. and Baker, G. (2003), "Influence of bond Slip on crack spacing in numerical modeling of reinforced concrete", J. Struct. Eng.-ASCE, 129(11), 1514-1521. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:11(1514)
  10. Cundall, P. and Strack, O. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  11. Cusatis, P., Bazant, Z. and Cedolin, L. (2003), "Confinement-shear lattice model for concrete damage in tension and compression: I. Theory", J. Eng. Mech., 129(12), 1439-1448. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1439)
  12. Hentz, S., Daudeville, L. and Donze, V. (2004), "Identification and Validation of a discrete element model for concrete", J. Eng. Mech.-ASCE, 130(6), 709-719. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)
  13. Lilliu, J.G. and Van Mier, M. (2003), "3D lattice type fracture model for concrete", Eng. Fract. Mech., 70, 841- 927.
  14. Lorig, L. and Cundall, P. (1987), "Modeling of reinforced concrete using the distinct element method", SEM/ RILEM International Conference on Fracture of Concrete and Rock (Eds. S. Sha and S. Swartz), Houston, 459-471.
  15. Kawai, T. (1978), "New discrete models and their application to seismic response analysis of structures", Nucl. Eng. Des., 48, 207-229. https://doi.org/10.1016/0029-5493(78)90217-0
  16. Meguro, K. and Hakuno, M. (1989), "Fracture analysis of concrete structures by the modified distinct element method", Struct. Eng. Earthq. Eng., 6(2), 283-294.
  17. Monteiro Azevedo, N. (2003), "A rigid particle discrete element model for the fracture analysis of plain and reinforced concrete", PhD Thesis, Heriot-Watt University, Scotland.
  18. Monteiro Azevedo, N. and Lemos, V. (2006), "Aggregate shape influence the fracture behaviour of concrete", Struct. Eng. Mech., 24(4), 411-427. https://doi.org/10.12989/sem.2006.24.4.411
  19. Morikawa, H., Sawamoto, Y. and Kobayashi, N. (1993), "Local fracture analysis of a reinforced concrete slab by the discrete element method", Proceedings of the 2nd International Conference on Discrete Element Methods, Cambridge, Massachusetts, IESL Publications, 275-286.
  20. Ngo, D. and Scordelis, A. (1967), "Finite element analysis of reinforced concrete", ACI J., 64(44), 152-163.
  21. Potyondy, D. and Cundall, P.A. (1996), "Modeling rock using bonded assemblies of circular particles", Proceedings of the 2nd North American Rock Mechanics Symposium, Montreal, June.
  22. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  23. Rokugo, K. (1989), "Testing method to determine tensile softening curve and fracture energy of concrete", Fracture Toughness and Fracture Energy, Balkema, 153-163.
  24. Saito, S. and Hikosaka, H., (1999), "Numerical analyses of reinforced concrete structures using spring network models", J. Materials Conc. Struct., Pavements, JSCE, 627(44), 289-303.
  25. Schlangen, E. and Garboczi, E. (1996), "New method for simulating fracture using an elastically uniform random geometry lattice", Int. J. Eng. Sci., 34(10), 1131-1144. https://doi.org/10.1016/0020-7225(96)00019-5
  26. Takada, S. and Hassani, N. (1997), "Modeling of reinforced concrete structures during earthquake", Proceedings of the 4th International Conference on Civil Engineering, Tehran.

피인용 문헌

  1. A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes vol.15, pp.4, 2015, https://doi.org/10.12989/cac.2015.15.4.485
  2. Simulating Tensile and Compressive Failure Process of Concrete with a User-defined Bonded-Particle Model vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0292-1
  3. Influence of particle packing on fracture properties of concrete vol.8, pp.6, 2011, https://doi.org/10.12989/cac.2011.8.6.677
  4. Applied element method simulation of experimental failure modes in RC shear walls vol.19, pp.4, 2017, https://doi.org/10.12989/cac.2017.19.4.365
  5. Numerical modeling of the tension stiffening in reinforced concrete members via discontinuum models vol.8, pp.3, 2010, https://doi.org/10.1007/s40571-020-00342-5