References
- Bert, C.W. and Malik, M. (1996), "The differential quadrature method for irregular domains and application to plate vibration", Int. J. Mech. Sci., 38(6), 589-606. https://doi.org/10.1016/S0020-7403(96)80003-8
- Cheung, Y.K., Tham, L.G. and Li, W.Y. (1988), "Free vibration and static analysis of general plates by spline finite strip method", Comput. Mech., 3, 187-197. https://doi.org/10.1007/BF00297445
- Cheung, Y.K. and Cheung, M.S. (1971), "Flexural vibrations of rectangular and other polygonal plates", J. Eng. Mech., 97, 3911-411.
-
Civalek,
$\ddot{O}$ . (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005 - Civalek, O. (2005), "Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of harmonic differential quadrature-finite difference methods", Int. J. Pres. Ves. Pip., 82(6), 470-479. https://doi.org/10.1016/j.ijpvp.2004.12.003
- Civalek, O.(2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Pres. Ves. Pip., 83, 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005
-
Civalek,
$\ddot{O}$ . (2007a), "Nonlinear analysis of thin rectangular plates on Winkler- Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Model., 31, 606-624. https://doi.org/10.1016/j.apm.2005.11.023 -
Civalek,
$\ddot{O}$ . (2007b), "Frequency analysis of isotropic conical shells by discrete singular convolution (DSC)", Struct. Eng. Mech., 25(1), 127-130. https://doi.org/10.12989/sem.2007.25.1.127 - Civalek, O.(2007c), "Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach", J. Comput. Appl. Math., 205, 251-271. https://doi.org/10.1016/j.cam.2006.05.001
-
Civalek,
$\ddot{O}$ . (2007d), "A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution", Thin Wall. Struct., 45, 692-698. https://doi.org/10.1016/j.tws.2007.05.004 - Geannakakes, G.N. (1990), "Vibration analysis of arbitrarily shaped plates using beam characteristics orthogonal polynomials in semi-analytical finite strip method", J. Sound Vib., 137, 283-303. https://doi.org/10.1016/0022-460X(90)90793-Y
- Gordon, W.J. and Hall, C.A. (1973), "Construction of curvilinear co-ordinate systems and application to mesh generation", Int. J. Numer. Meth. Eng., 7, 461-477. https://doi.org/10.1002/nme.1620070405
- Gorman, D.J. (1988), "Accurate free vibration analysis of rhombic plates with simply-supported and fullyclamped edge conditions", J. Sound Vib., 125, 281-290. https://doi.org/10.1016/0022-460X(88)90283-0
- Han, J.B. and Liew, K.M. (1997), "An eight-node curvilinear differential quadrature formulation for Reissner/ Mindlin plates", Comput. Meth. Appl. Mech. Eng., 141, 265-280. https://doi.org/10.1016/S0045-7825(96)01115-2
- Huang, C.S., Leissa, A.W. and McGee, O.G. (1993), "Exact analytical solutions for free vibrations of sectorial plates with simply supported radial edges", J. Appl. Mech., 60, 478-483. https://doi.org/10.1115/1.2900818
- Karami, G. and Malekzadeh, P. (2003), "An efficient differential quadrature methodology for free vibration analysis of arbitrary straight-sided quadrilateral thin plates", J. Sound Vib., 263, 415-442. https://doi.org/10.1016/S0022-460X(02)01062-3
- Lam, K.Y., Liew, K.M. and Chow, S.T. (1992), "Use of two-dimensional orthogonal polynomials for vibration analysis of circular and elliptical plates", J. Sound Vib., 154, 261-269. https://doi.org/10.1016/0022-460X(92)90580-Q
- Lam, K.Y., Liew, K.M. and Chow, S.T. (1990), "Free vibration analysis of isotropic and orthotropic triangular plates", Int. J. Mech. Sci., 32(5), 455-464. https://doi.org/10.1016/0020-7403(90)90172-F
- Leissa, A.W. (1969), Vibration of Plates, NASA, SP-160.
- Leissa, A.W. (1977), "Recent research in plate vibrations: complicating effects", Shock Vib., 9(11), 21-35. https://doi.org/10.1177/058310247700901106
- Leissa, A.W. (1981), "Plate vibration research, 1976-1980: classical theory", Shock Vib., 13(9), 11-12. https://doi.org/10.1177/058310248101300905
- Leissa, A.W. (1987), "Recent research in plate vibrations: 1981-1985: Part I. classical theory", Shock Vib., 19(2), 11-18. https://doi.org/10.1177/058310248701900204
- Leissa, A.W., McGee, O.G. and Huang, C.S. (1993), "Vibrations of sectorial plates having corner stress singularities", J. Appl. Mech., 60, 131-140.
- Li, W.Y., Cheung, Y.K. and Tham, L.G. (1986), "Spline finite strip analysis of general plates", J. Eng. Mech., 112(1), 43-54. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(43)
- Liew, K.M. and Han, J.B. (1997), "A four-note differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates", Commun. Numer. Meth. Eng., 13, 73-81. https://doi.org/10.1002/(SICI)1099-0887(199702)13:2<73::AID-CNM32>3.0.CO;2-W
- Liew, K.M. (1992), "Frequency solutions for circular plates with internal supports and discontinuous boundaries", Int. J. Mech. Sci., 34(7), 511-520. https://doi.org/10.1016/0020-7403(92)90027-E
- Liew, K.M., Xiang, Y. and Kitipornchai, S. (1995), "Benchmark vibration solutions for regular polygonal Mindlin plates", J. Acoust. Soc. Am., 97(5), 2866-2871. https://doi.org/10.1121/1.411852
- Liew, K.M. and Lam, K.Y. (1993a), "On the use of 2-D orthogonal polynomials in the Rayleigh-Ritz method for flexural vibration of annular sector plates of arbitrary shape", Int. J. Mech. Sci., 35, 129-139. https://doi.org/10.1016/0020-7403(93)90071-2
- Liew, K.M. and Lam, K.Y. (1993b), "Transverse vibration of solid circular plates continuous over multiple concentric annular supports", J. Appl. Mech., 60, 208-210. https://doi.org/10.1115/1.2900749
- Liew, K.M., Lim, C.W. and Lim, M.K. (1994), "Transverse vibration of trapezoidal plates of variable thickness: unsymmetric trapezoids", J. Sound Vib., 177(4), 479-501. https://doi.org/10.1006/jsvi.1994.1447
- Liew, K.M. and Sumi, Y.K. (1998), "Vibration of plates having orthogonal straight edges with clamped boundaries", J. Eng. Mech., 124, 184-192. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:2(184)
- Liew, K.M., Lam, K.Y. and Chow, S.T. (1990), "Free vibration analysis of rectangular plates using orthogonal plate function", Comp. Struct., 34(1), 79-85. https://doi.org/10.1016/0045-7949(90)90302-I
- Liew, K.M. and Lam, K.Y. (1990), "Application of two-dimensional orthogonal plate function to flexural vibration of skew plates", J. Sound Vib., 139(2), 241-252. https://doi.org/10.1016/0022-460X(90)90885-4
- Liew, K.M. and Lam, K.Y. (1991), "A Rayleigh-Ritz approach to transverse vibration of isotropic and anisotropic trapezoidal plates using orthogonal plate functions", Int. J. Solids Struct., 27(2), 189-203. https://doi.org/10.1016/0020-7683(91)90228-8
- Liew, K.M. (1993a), "On the use of pb-2 Rayleigh-Ritz method for free flexural vibration of triangular plates with curved internal supports", J. Sound Vib., 165(2), 329-340. https://doi.org/10.1006/jsvi.1993.1260
- Liew, K.M. (1993b), "Treatments of over-restrained boundaries for doubly connected plates of arbitrary shape in vibration analysis", Int. J. Solids Struct., 30(3), 337-347. https://doi.org/10.1016/0020-7683(93)90170-C
- Liew, K.M. and Lim, M.K. (1993), "Transverse vibration of trapezoidal plates of variable thickness: symmetric trapezoids", J. Sound Vib., 165(1), 45-67. https://doi.org/10.1006/jsvi.1993.1242
- Lim, C.W., Li, Z.R., Xiang, Y., Wei, G.W. and Wang, C.M. (2005a), "On the missing modes when using the exact frequency relationship between Kirchhoff and Mindlin plates", Adv. Vib. Eng., 4, 221-248.
- Lim, C.W., Li, Z.R. and Wei, G.W. (2005b), "DSC-Ritz method for high-mode frequency analysis of thick shallow shells", Int. J. Numer. Meth. Eng., 62, 205-232. https://doi.org/10.1002/nme.1179
- Liu, F.L. and Liew, K.M. (1999), "Free vibration analysis of Mindlin sector plates: numerical solutions by differential quadrature method", Comput. Meth. Appl. Mech. Eng., 177, 77-92. https://doi.org/10.1016/S0045-7825(98)00376-4
- Malik, M. and Bert, C.W. (2000), "Vibration analysis of plates with curvilinear quadrilateral planforms by DQM using blending functions", J. Sound Vib., 230(4), 949-954. https://doi.org/10.1006/jsvi.1999.2584
- Ng, C.H.W., Zhao, Y.B. and Wei, G.W. (2004), "Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates", Comput. Meth. Appl. Mech. Eng., 193, 2483-2506. https://doi.org/10.1016/j.cma.2004.01.013
- Shu, C., Chen, W. and Du, H. (2000), "Free vibration analysis of curvilinear quadrilateral plates by the differential quadrature method", J. Comput. Phys., 163, 452-466. https://doi.org/10.1006/jcph.2000.6576
- Singh, B. and Chakraverty, S. (1992), "On the use of orthogonal polynomials in the Rayleigh-Ritz method for study of transverse vibration of elliptic plates", Comp. Struct., 43, 439-443. https://doi.org/10.1016/0045-7949(92)90277-7
- Wang, C.M., Xiang, Y., Watanabe, E. and Utsunomiya, T. (2004), "Mode shapes and stress-resultants of circular Mindlin plates with free edges", J. Sound Vib., 276(3-5), 511-525. https://doi.org/10.1016/j.jsv.2003.08.010
- Wang, C.M. (1994), "Natural frequencies formula for simply supported Mindlin plates", J. Vib. Acoust., 116(4), 536-540. https://doi.org/10.1115/1.2930460
- Wang, C.M., Xiang, Y., Utsunomiya, T. and Watanabe, E. (2001), "Evaluation of modal stress resultants in freely vibrating plates", Int. J. Solids Struct., 38(36-37), 6525-6558. https://doi.org/10.1016/S0020-7683(01)00040-3
- Wang, G. and Cheng-Tzu, T.H. (1994), "Static and dynamic analysis of arbitrary quadrilateral flexural plates by B3-spline functions", Int. J. Solids Struct., 31, 657-667. https://doi.org/10.1016/0020-7683(94)90144-9
- Wang, X., Striz, A.G. and Bert, C.W. (1994), "Buckling and vibration analysis of skew plates by the differential quadrature method", AIAA J., 32(4), 886-889. https://doi.org/10.2514/3.12071
- Wei, G.W., Kouri, D.J. and Hoffman, D.K. (1998), "Wavelets and distributed approximating functionals", Comput. phys. Commun., 112, 1-6. https://doi.org/10.1016/S0010-4655(98)00051-4
- Wei, G.W. (1999), "Discrete singular convolution for the solution of the Fokker-Planck equations", J. Chem. Phys., 110, 8930-8942. https://doi.org/10.1063/1.478812
- Wei, G.W. (2001a), "A new algorithm for solving some mechanical problems", Comput. Meth. Appl. Mech. Eng., 190, 2017-2030. https://doi.org/10.1016/S0045-7825(00)00219-X
- Wei, G.W. (2001b), "Vibration analysis by discrete singular convolution", J. Sound Vib., 244, 535-553. https://doi.org/10.1006/jsvi.2000.3507
- Wei, G.W. (2001c), "Discrete singular convolution for beam analysis", Eng. Struct., 23, 1045-1053. https://doi.org/10.1016/S0141-0296(01)00016-5
- Wei, G.W., Zhao, Y.B. and Xiang, Y. (2001), "The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution", Int. J. Mech. Sci., 43, 1731-1746. https://doi.org/10.1016/S0020-7403(01)00021-2
- Wei, G.W. and Gu, Y. (2002), "Conjugate filter approach for solving Burgers' equation", J. Comput. Appl. Math., 149, 439-456. https://doi.org/10.1016/S0377-0427(02)00488-0
- Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002a), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm", Int. J. Numer. Meth. Eng., 55, 913-946. https://doi.org/10.1002/nme.526
- Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002b), "A novel approach for the analysis of high-frequency vibrations", J. Sound Vib., 257(2), 207-246. https://doi.org/10.1006/jsvi.2002.5055
- Wu, W.X., Shu, C. and Wang, C.M. (2006), "Computation of modal stress resultants for completely free vibrating plates by LSFD method", J. Sound Vib., 297, 704-726. https://doi.org/10.1016/j.jsv.2006.04.019
- Xiang, Y., Liew, K.M. and Kitipornchai, S. (1993), "Transverse vibration of thick annular sector plates", J. Eng. Mech., 119, 1579-1599. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:8(1579)
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), "Discrete singular convolution for the prediction of high frequency vibration of plates", Int. J. Solids Struct., 39, 65-88. https://doi.org/10.1016/S0020-7683(01)00183-4
- Zhao, Y.B. and Wei, G.W. (2002), "DSC analysis of rectangular plates with non-uniform boundary conditions", J. Sound Vib., 255(2), 203-228. https://doi.org/10.1006/jsvi.2001.4150
- Zhao, S., Wei, G.W. and Xiang, Y. (2005), "DSC analysis of free-edged beams by an iteratively matched boundary method", J. Sound Vib., 284, 487-493. https://doi.org/10.1016/j.jsv.2004.08.037
Cited by
- New analytic solutions for free vibration of rectangular thick plates with an edge free vol.131-132, 2017, https://doi.org/10.1016/j.ijmecsci.2017.07.002
- On new analytic free vibration solutions of rectangular thin cantilever plates in the symplectic space vol.53, 2018, https://doi.org/10.1016/j.apm.2017.09.011
- New benchmark solutions for free vibration of clamped rectangular thick plates and their variants vol.78, 2018, https://doi.org/10.1016/j.aml.2017.11.006
- Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey vol.67, pp.2, 2010, https://doi.org/10.1115/1.4028859
- Free transverse vibration of shear deformable super-elliptical plates vol.24, pp.4, 2017, https://doi.org/10.12989/was.2017.24.4.307
- On the Convergence of Laminated Composite Plates of Arbitrary Shape through Finite Element Models vol.2, pp.1, 2010, https://doi.org/10.3390/jcs2010016
- A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2010, https://doi.org/10.1007/s11831-019-09365-5
- Approximate analysis of quadrilateral slabs having various cases of boundary conditions and aspect ratios vol.24, pp.9, 2021, https://doi.org/10.1177/1369433220982099