References
- Abdou, L., Ami Saada, R., Meftah, F. and Mebarki, A. (2006), "Experimental investigations of the joint-mortar behaviour", Mech. Res. Commun., 33(3), 370-384. https://doi.org/10.1016/j.mechrescom.2005.02.026
- American Society for Testing and Materials (ASTM), Standard Test Method for Compressive Strength of Masonry Prisms, C1314.
- American Society for Testing and Materials (ASTM), Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages, E519.
- Benedetti, A. and Steli, E. (2008), "Analytical models for shear-displacement curves of unreinforced and FRP reinforced masonry panels", Constr. Build. Mater., 22(3), 175-185. https://doi.org/10.1016/j.conbuildmat.2006.09.005
- Betti, M. and Vignoli, A. (2008a), "Assessment of seismic resistance of a basilica-type church under earthquake loading: Modelling and analysis", Adv. Eng. Sof., 39(4), 258-283. https://doi.org/10.1016/j.advengsoft.2007.01.004
- Betti, M. and Vignoli, A. (2008b), "Modelling and analysis of a Romanesque church under earthquake loading: Assessment of seismic resistance", Eng. Struct., 30(2), 352-367. https://doi.org/10.1016/j.engstruct.2007.03.027
- Chaimoon, K. and Attard, M.M. (2007), "Modeling of unreinforced masonry walls under shear and compression", Eng. Struct., 29(9), 2056-2068. https://doi.org/10.1016/j.engstruct.2006.10.019
- ElGawady, M.A., Lestuzzi, P. and Badoux, M. (2007), "Static Cyclic Response of Masonry Walls Retrofitted with Fiber-Reinforced Polymers", J. Comp. Constr., ASCE, 11(1), 50-61. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:1(50)
- FEMA 356 (2000), Prestandard for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C.
- Gabor, A., Bennani, A., Jacquelin, E. and Lebon, F. (2006a), "Modelling approaches of the in-plane shear behaviour of unreinforced and FRP strengthened masonry panels", Comp. Struct., 74(3), 277-288. https://doi.org/10.1016/j.compstruct.2005.04.012
- Gabor, A., Ferrier, E., Jacquelin, E. and Hamelin, P. (2006b), "Analysis and modelling of the in-plane shear behaviour of hollow brick masonry panels", Constr. Build. Mater., 20(5), 308-321. https://doi.org/10.1016/j.conbuildmat.2005.01.032
- Hamid, A.A., El-Dakhakhni, W.W., Hakam, Z.H.R. and Elgaaly, M. (2005), "Behavior of composite unreinforced masonry-fiber-reinforced polymer wall assemblages under in-plane loading", J. Compos. Constr., ASCE, 9(1), 73-83. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(73)
- Kappos, A.J., Penelis, G.G. and Drakopoulos, C.G. (2002), "Evaluation of Simplified Models for Lateral Load Analysis of Unreinforced Masonry Buildings", J. Struct. Eng., ASCE, 128(7), 890-897. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(890)
- Milani, G., Lourenço, P. and Tralli, A. (2007), "3D homogenized limit analysis of masonry buildings under horizontal loads", Eng. Struct., 29(11), 3134-3148. https://doi.org/10.1016/j.engstruct.2007.03.003
- Pallares, F.J., Agüero, A. and Martín, M. (2006), "Seismic behaviour of industrial masonry chimneys", Int. J. Solids Struct., 43(7-8), 2076-2090. https://doi.org/10.1016/j.ijsolstr.2005.06.014
- Prota, A., Marcari, G., Fabbrocino, G., Manfredi, G. and Aldea, C. (2006), "Experimental in-plane behavior of tuff masonry strengthened with cementitious matrix-grid composites", J. Compos. Constr., ASCE, 10(3), 223- 233. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:3(223)
- Roca, P. (2006), "Assessment of masonry shear-walls by simple equilibrium models", Constr. Build. Mater., 20(4), 229-238. https://doi.org/10.1016/j.conbuildmat.2005.08.023
- Shariq, M., Abbas, H., Irtaza, H. and Qamaruddin, M. (2008), "Influence of openings on seismic performance of masonry building walls", Build. Environ., 43(7), 1232-1240. https://doi.org/10.1016/j.buildenv.2007.03.005
- Shrive, N.G. (2006), "The use of fibre reinforced polymers to improve seismic resistance of masonry", Constr. Build. Mater., 20(4), 269-277. https://doi.org/10.1016/j.conbuildmat.2005.08.030
- Tasnimi, A.A. (2004), Behavior of Brick Walls Recommended by Iranian Code of Practice for Seismic Resistant Design of Buildings, Building and Housing Research Center, No. R-404, Tehran, Iran.
- Tasnimi, A.A. (2005), Behavior of Confined and Non-confined Brick Buildings, Natural Disaster Research Institute, Tehran, Iran.
- Turco, V., Secondin, S., Morbin, A., Valluzzi, M.R. and Modena, C. (2006), "Flexural and shear strengthening of un-reinforced masonry with FRP bars", Compos. Sci. Technol., 66(2), 289-296. https://doi.org/10.1016/j.compscitech.2005.04.042
- Valluzzi, M.R., Tinazzi, D. and Modena, C. (2002), "Shear behavior of masonry panels strengthened by FRP laminates", Constr. Build. Mater., 16(7), 409-416. https://doi.org/10.1016/S0950-0618(02)00043-0
- Yi, T., Moon, F.L., Leon, R.T. and Kahn, L.F. (2006), "Analyses of a Two-Story Unreinforced Masonry Building", J. Struct. Eng., ASCE, 132(5), 653-662. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(653)
Cited by
- Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation vol.90, 2016, https://doi.org/10.1016/j.ijsolstr.2016.03.002
- Experimental response of double-wythe masonry panels strengthened with glass fiber reinforced polymers subjected to diagonal compression tests vol.39, 2012, https://doi.org/10.1016/j.engstruct.2012.01.018
- Cyclic behavior of perforated masonry walls strengthened with glass fiber reinforced polymers vol.19, pp.2, 2012, https://doi.org/10.1016/j.scient.2012.02.011
- Research of Masonry Shear Strength under Shear-Compression Action vol.1065-1069, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.1065-1069.1309
- Seismic behavior and shear strength of new-type fired perforated brick walls with high void ratio pp.2048-4011, 2018, https://doi.org/10.1177/1369433218802690
- A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability vol.38, pp.4, 2010, https://doi.org/10.12989/sem.2011.38.4.503