참고문헌
- Alavi, A.H., Gandomi, A.H., Sahab, M.G. and Gandomi, M. (2010), "Multi expression programming: a new approach to formulation of soil classification", Eng. Comput., 26(2), 111-118. https://doi.org/10.1007/s00366-009-0140-7
- Banzhaf, W., Nordin, P., Keller, R. and Francone, F. (1998), Genetic Programming - An Introduction. on the Automatic Evolution of Computer Programs and Its Application, San Francisco: (The Morgan Kaufmann Series in Artificial Intelligence), Morgan Kaufmann Publishers, Heidelberg.
- Basma, A.A., Barakat, S. and Oraimi, S.A. (1999), "Prediction of cement degree of hydration using artificial neural networks", Mater. J., 96(2), 166-172.
- Billings, S., Korenberg, M. and Chen, S. (1988), "Identification of nonlinear outputaffine systems using an orthogonal least-squares algorithm", Int. J. Syst. Sci., 19(8), 1559-1568. https://doi.org/10.1080/00207728808964057
- Cao, H., Yu, J., Kang, L. and Chen, Y. (1999), "The kinetic evolutionary modelling of complex systems of chemical reactions", Comput. Chem. Eng., 23(1), 143-151. https://doi.org/10.1016/S0097-8485(99)00005-4
- Chen, L. (2003), "A study of applying macroevolutionary genetic programming to concrete strength estimation", Expert. Syst. Appl., 17(4), 290-294.
- Chen, L. and Wang, T. (2010), "Modeling strength of high-performance concrete using an improved grammatical evolution combined with macro genetic algorithm", J. Comput. Civil Eng., 24(3), 281-288. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000031
- Chen, S., Billings, S. and Luo, W. (1989), "Orthogonal least squares methods and their application to non-linear system identification", Int. J. Control, 50(5), 1873-1896. https://doi.org/10.1080/00207178908953472
- Domone, P. and Soutsos, M. (1994), "An approach to the proportioning of high-strength concrete mixes", Concrete Int., 16(10), 26-31.
- Gandomi, A.H., Alavi, A.H. and Sahab, M.G. (2010a), "New formulation for compressive strength of CFRP Confined concrete cylinders using linear genetic programming", Mater. Struct., 43(7), 963-983. https://doi.org/10.1617/s11527-009-9559-y
- Gandomi, A.H., Alavi, A.H., Mirzahosseini, M.R. and Moghadas Nejad, F. (2010b), "Nonlinear genetic-based models for prediction of flow number of asphalt mixtures", J. Mater. Civil Eng. (ASCE), DOI: 10.1061/(ASCE)MT.1943-5533.0000154 (in press).
- Gandomi, A.H. and Alavi, A.H. (2010c), "Hybridizing genetic programming with orthogonal least squares for modeling of soil liquefaction", Computational Collective Intelligence and Hybrid Systems Concepts and Applications, IGI Global Publishing (in press).
- Gandomi, A.H., Alavi, A.H. and Arjmandi, P. (2010a), "Genetic programming and orthogonal least squares: a hybrid approach to modeling of compressive strength of CFRP-confined concrete cylinders" J. Mech. Mater. Struct. (in press).
- Gandomi, A.H., Alavi, A.H., Sahab, M.G. and Arjmandi, P. (2010b), "Formulation of elastic modulus of concrete using linear genetic programming", J. Mech. Sci. Tech., 24(6), 1011-1017. https://doi.org/10.1007/s12206-010-0317-4
- Goodspeed, C.H., Vanikar, S. and Cook, R. (1996), "High-performance concrete (HPC) defined for highway structures", Concrete Int., 18(2), 62-67.
- Jepsen, M.T. (2002), "Predicting concrete durability by using artificial neural network", Published in a Special NCR-publication, ID. 5268.
- Ji, T., Lin, T. and Lin, X. (2006), "A concrete mix proportion design algorithm based on artificial neural networks", Cement Concrete Res., 36(7), 1399-1408. https://doi.org/10.1016/j.cemconres.2006.01.009
- Johari, A., Habibagahi, G. and Ghahramani, A. (2006), "Prediction of soil-water characteristic curve using genetic programming", J. Geotech. Geoenviron. Eng., 132(5), 661-665. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(661)
- Kasperkiewicz, J., Racz, J. and Dubrawski, A. (1995), "HPC strength prediction using artificial neural network", J. Comput. Civil Eng., 9(4), 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279)
- Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge.
- Madar, J., Abonyi, J. and Szeifert, F. (2005a), "Genetic programming for the identification of nonlinear inputoutput models", Indian Eng. Chem. Res., 44(9), 3178-3186. https://doi.org/10.1021/ie049626e
- Madar, J., Abonyi, J. and Szeifert, F. (2005b), "Genetic programming for the identification of nonlinear inputoutput models", White Paper.
- Madar, J., Abonyi, J. and Szeifert, F. (2004), "Genetic programming for system identification", Proceedings of the Intelligent Systems Design and Applications (ISDA 2004) Conference, Budapest, Hungary.
- Maravall, A. and Gomez, V. (2004), EViews Software, Ver. 5, Quantitative Micro Software, LLC, Irvine CA.
- Pearson, R.K. (2003), "Selecting nonlinear model structures for computer control", J. Process Contr., 13(1), 1-26. https://doi.org/10.1016/S0959-1524(02)00022-7
- Raghu Prasad, B.K., Eskandari, H. and Venkatarama Reddy, B.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23(1), 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014
- Rajasekaran, S. and Amalraj, R. (2002), "Predictions of design parameters in civil engineering problems using SLNN with a single hidden RBF neuron", Comput. Struct., 80(31), 2495-2505. https://doi.org/10.1016/S0045-7949(02)00213-4
- Rajasekaran, S. and Lavanya, S. (2007), "Hybridization of genetic algorithm with immune system for optimization problems in structural engineering", Struct. Multidiscip. O., 34(5), 415-429. https://doi.org/10.1007/s00158-006-0084-0
- Rajasekaran, S., Suresh, D. and Pai, G.A.V. (2002), "Application of sequential learning neural networks to civil engineering modeling problems", Eng. Comput., 18, 138-147. https://doi.org/10.1007/s003660200012
- Reeves, C.R. (1997), "Genetic algorithm for the operations research", Inf. J. Comput., 9, 231-250. https://doi.org/10.1287/ijoc.9.3.231
- Ryan, T.P. (1997), Modern Regression Methods, Wiley, New York.
- Salajegheh, E. and Ali, H. (2005), "Optimum design of structures against earthquake by wavelet neural network and filter banks", Earthq. Eng. Struct. D., 34(1), 67-82. https://doi.org/10.1002/eqe.417
- Yeh, I. and Lien, L. (2009), "Knowledge discovery of concrete material using genetic operation trees", Expert. Syst. Appl., 36, 5807-5812. https://doi.org/10.1016/j.eswa.2008.07.004
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I.C. (2006a), "Exploring concrete slump model using artificial neural networks", J. Comput. Civil Eng., 20(3), 217-221. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(217)
- Yeh, I.C. (2006b), "Analysis of strength of concrete using design of experiments and neural networks", J. Mater. Civil Eng., 18(4), 597-604. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597)
- Yeh, I.C. (2006c), "Generalization of strength versus water-cementations ratio relationship to age", Cement Concrete Res., 36(10), 1865-1873. https://doi.org/10.1016/j.cemconres.2006.05.013
- Yeh, I.C. (2007), "Modeling slump flow of concrete using second-order regressions and artificial neural networks", Cement Concrete Comp., 29, 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001
피인용 문헌
- Predictive modeling of concrete compressive strength based on cement strength class vol.11, pp.6, 2013, https://doi.org/10.12989/cac.2013.11.6.587
- Virtual teaching and learning environments: Automatic evaluation with symbolic regression vol.31, pp.4, 2016, https://doi.org/10.3233/JIFS-169045
- Robust attenuation relations for peak time-domain parameters of strong ground motions vol.67, pp.1, 2012, https://doi.org/10.1007/s12665-011-1479-9
- New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach vol.110, 2017, https://doi.org/10.1016/j.advengsoft.2017.03.011
- A data mining approach to compressive strength of CFRP-confined concrete cylinders vol.36, pp.6, 2010, https://doi.org/10.12989/sem.2010.36.6.759
- A new predictive model for compressive strength of HPC using gene expression programming vol.45, pp.1, 2012, https://doi.org/10.1016/j.advengsoft.2011.09.014
- A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems vol.21, pp.1, 2012, https://doi.org/10.1007/s00521-011-0734-z
- Prediction of compressive strength of concrete using multiple regression model vol.45, pp.6, 2010, https://doi.org/10.12989/sem.2013.45.6.837
- Prediction of concrete compressive strength using non-destructive test results vol.21, pp.4, 2010, https://doi.org/10.12989/cac.2018.21.4.407
- New machine learning prediction models for compressive strength of concrete modified with glass cullet vol.36, pp.3, 2019, https://doi.org/10.1108/ec-08-2018-0348
- Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete vol.13, pp.5, 2010, https://doi.org/10.3390/ma13051023
- Applications of Gene Expression Programming and Regression Techniques for Estimating Compressive Strength of Bagasse Ash based Concrete vol.10, pp.9, 2010, https://doi.org/10.3390/cryst10090737
- Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/6682283
- Performance Evaluation of Soft Computing for Modeling the Strength Properties of Waste Substitute Green Concrete vol.13, pp.5, 2010, https://doi.org/10.3390/su13052867
- Multigene Expression Programming Based Forecasting the Hardened Properties of Sustainable Bagasse Ash Concrete vol.14, pp.19, 2021, https://doi.org/10.3390/ma14195659