참고문헌
- Adeli, H. (2001), "Neural networks in civil engineering, 1989-2000", Comput-Aided Civ. Inf., 16(2), 126-147. https://doi.org/10.1111/0885-9507.00219
- Akbas, B. (2006), "A neural network model to assess the hysteretic energy demand in steel moment resisting frames", Struct. Eng. Mech., 23(2), 177-193. https://doi.org/10.12989/sem.2006.23.2.177
- Arslan, H., Ceylan, M., Kaltakci, M.Y., Ozaby, Y. and Gulay, F.G. (2007), "Prediction of force reduction factor (R) of prefabricated industrial buildings using neural networks", Struct. Eng. Mech., 27(2), 117-134. https://doi.org/10.12989/sem.2007.27.2.117
- Bakhary, N., Hao, H. and Deeks, A.J. (2007), "Damage detection using artificial neural network with consideration of uncertainties", Eng. Struct., 29(11), 2806-2815. https://doi.org/10.1016/j.engstruct.2007.01.013
- Bazant, Z.P. (1972), "Prediction of concrete creep-effects using age adjusted effective modulus method", ACI J., 69(4), 212-217.
- CEB-FIP MC 90 (1993), "Model code 1990 for concrete structures. Bulletin d information No. 213/214", Comite Euro International du Beton-Fe'de'ration International de la Pre'contrainte, Laussane (Switzerland).
- Chandak, R., Upadhyay, A. and Bhargava, P. (2008), "Shear lag prediction in symmetrical laminated composite box beams using artificial network", Struct. Eng. Mech., 29(1), 77-89. https://doi.org/10.12989/sem.2008.29.1.077
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007a), "Bending moment prediction for continuous composite beams by neural networks", Adv. Struct. Eng., 10(4), 439-454. https://doi.org/10.1260/136943307783239390
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007b), "A hybrid procedure for cracking and time-dependent effects in composite frames at service load", J. Struct. Eng.-ASCE, 133(2), 166-175. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(166)
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007c), "An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load", Steel Compos. Struct., 7(3), 219-240. https://doi.org/10.12989/scs.2007.7.3.219
- Cheng, J., Cai, C.S. and Xiao, R.C. (2007), "Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures", Struct. Eng. Mech., 26(3), 251-262. https://doi.org/10.12989/sem.2007.26.3.251
- Cho, H.N., Cho, Y.M., Lee, S.C. and Hur, C.K. (2004), "Damage assessment of cable stayed bridges using probabilistic neural network", Struct. Eng. Mech., 17(3), 483-492. https://doi.org/10.12989/sem.2004.17.3_4.483
- Flood, I. and Kartam, N. (1994a), "Neural networks in civil engineering I: Principles and understanding", J. Comput. Civil Eng.-ASCE, 8(2), 131-148. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(131)
- Flood, I. and Kartam, N. (1994b), "Neural networks in civil engineering II: Systems and application", J. Comput. Civil Eng.-ASCE, 8(2), 149-162. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(149)
- Gilbert, R.I. and Bradford, M.A. (1995), "Time-dependent behaviour of composite beams at service loads", J. Struct. Eng.-ASCE, 121(2), 319-327. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(319)
- Hajela, P. and Berke, L. (1991), "Neurobiological computational models in structural analysis and design", Comput. Struct., 41(4), 657-667. https://doi.org/10.1016/0045-7949(91)90178-O
- Hajela, P. and Berke, L. (1992), "Neural networks in engineering analysis and design", Comput. Syst. Eng., 3(1), 525-538. https://doi.org/10.1016/0956-0521(92)90138-9
- Jiang, S.F., Zhang, C.M. and Koh, C.G. (2006), "Structural damage detection by integrating data fusion and probabilistic neural network", Adv. Struct. Eng., 9(4), 445-458. https://doi.org/10.1260/136943306778812787
- Jeng, C.H. and Mo, Y.L. (2004), "Quick seismic response estimation of prestressed concrete bridges using artificial neural networks", J. Comput. Civil Eng.-ASCE, 118(4), 360-369.
- Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), "Neural network-based damage detection for bridges considering errors in baseline finite element models", J. Sound Vib., 280(3-5), 555-578. https://doi.org/10.1016/j.jsv.2004.01.003
- Maru, S. and Nagpal, A.K. (2004), "Neural network for creep and shrinkage deflections in reinforced concrete frames", J. Comput. Civil Eng.-ASCE, 18(4), 350-359. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:4(350)
- Mo, Y.L. and Lin, S.S. (1994), "Investigation of framed shearwall behavior with neural networks", Mag. Concrete Res., 46(169), 289-300. https://doi.org/10.1680/macr.1994.46.169.289
- Mo, Y.L. and Han, R.H. (1995), "Investigation of prestressed concrete frame behavior with neural networks", J. Intel. Mat. Syst. Str., 6, 566-573. https://doi.org/10.1177/1045389X9500600414
- Mo, Y.L. and Koan, K.J. (1998), "Investigation of welding effect on rebars using neural networks", J. Test. Eval., 26(3), 285-292. https://doi.org/10.1520/JTE12003J
- Mo, Y.L., Hung, H.Y. and Zhong, J. (2002), "Investigation of stress-strain relationship of confined concrete in hollow bridge columns using neural networks", J. Test. Eval., 30(4), 330-339. https://doi.org/10.1520/JTE12323J
- Pendharkar, U. (2007), "Neural network model for composite beams and frames considering cracking and timeeffects", Ph.D. Thesis, IIT Delhi, Delhi.
- Qu, W.L., Chen, W. and Xiao, Y.Q. (2003), "A two-step approach for joint damage diagnosis of framed structures using artificial neural networks", Struct. Eng. Mech., 16(5), 581-596. https://doi.org/10.1296/SEM2003.16.05.04
- Reich, Y. and Barai, S.V. (1999), "Evaluating machine learning models for engineering problems", Artif. Intell. Eng., 13(3), 257-272. https://doi.org/10.1016/S0954-1810(98)00021-1
- SNNS (1998), User's Manual, Ver. 4.2, University of Sttutgart, Institute for Parallel and Distributed High Performance Systems.
- Subrmanian, K., Mini, K. and Florence, J.K. (2005), "Neural network based modeling of infilled steel frames", Struct. Eng. Mech., 21(5), 495-506. https://doi.org/10.12989/sem.2005.21.5.495
- Tsai, C.H. and Hsu, D.S. (2002), "Diagnosis of reinforced concrete structural damage base on displacement time history using the back-propagation neural network technique", J. Comput. Civil Eng.-ASCE, 6(1), 49-58.
- Yeung, W.T. and Smith, J.W. (2005), "Damage detection in bridges using neural networks for pattern recognition of vibration signatures", Eng. Struct., 27(5), 685-698. https://doi.org/10.1016/j.engstruct.2004.12.006
피인용 문헌
- An automated computationally efficient two-stage procedure for service load analysis of RC flexural members considering concrete cracking vol.33, pp.3, 2017, https://doi.org/10.1007/s00366-016-0496-4
- Closed-form expressions for long-term deflections in high-rise composite frames vol.17, pp.1, 2017, https://doi.org/10.1007/s13296-016-0115-7
- Explicit expression for effective moment of inertia of RC beams vol.12, pp.3, 2015, https://doi.org/10.1590/1679-78251272
- Rapid prediction of deflections in multi-span continuous composite bridges using neural networks vol.15, pp.4, 2015, https://doi.org/10.1007/s13296-015-1211-9
- Rapid prediction of long-term deflections in composite frames vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.547
- Prediction of moments in composite frames considering cracking and time effects using neural network models vol.39, pp.2, 2010, https://doi.org/10.12989/sem.2011.39.2.267
- Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams vol.11, pp.3, 2013, https://doi.org/10.12989/cac.2013.11.3.237
- Rapid prediction of inelastic bending moments in RC beams considering cracking vol.18, pp.6, 2010, https://doi.org/10.12989/cac.2016.18.6.1113
- Predicting shear strength of SFRC slender beams without stirrups using an ANN model vol.61, pp.5, 2017, https://doi.org/10.12989/sem.2017.61.5.605
- Neural network based approach for rapid prediction of deflections in RC beams considering cracking vol.19, pp.3, 2010, https://doi.org/10.12989/cac.2017.19.3.293
- Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors vol.64, pp.4, 2010, https://doi.org/10.12989/sem.2017.64.4.437
- An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams vol.70, pp.6, 2019, https://doi.org/10.12989/sem.2019.70.6.751