References
- Alefeld, G. and Mayer, G. (2000), "Interval analysis: Theory and applications", J. Comput. Appl. Math., 121, 421-464. https://doi.org/10.1016/S0377-0427(00)00342-3
- Barbarosie, C. and Toader, A.M. (2009), "Shape and topology optimization for periodic problems", Struct. Multidiscip. O., 40(1-6), 393-408.
- Bendsoe, M.P. (1995), Optimization of Structural Topology, Shape and Material, Springer, New York.
- Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in optimal design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71(1), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
- Dwyer, P.S. (1951), Linear Computation, Wiley.
- Haug, E.J., Choi, K.K. and Komkov, V. (1986), Design Sensitivity Analysis of Structural Systems, Academic Press Orlando, New York.
- Lee, D.K., Shin, S.M. and Park, S.S. (2006a), "Topological optimal design of truss bridge considering structural uncertainties", Proceedings of the 6th International Symposium on Architectural Interchanges in Asia, Daegu, October.
- Lee, D.K., Shin, S.M. and Park, S.S. (2006b), "Topological optimal design of beam-to-column connection considering structural uncertainties", Arch. Inst. Korea, 22(9), 27-34.
- Lehoucq, R.B., Sorensen, D.C. and Yang, C. (1998), ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM Publications, Philadelphia.
- Maglaras, G., Nikolaidids, E., Haftka, R.T. and Cudney, H.H. (1997), "Analytical-experimental comparison of probabilistic methods and fuzzy set based methods for designing under uncertainty", Struct. Multidiscip. O., 13, 69-80. https://doi.org/10.1007/BF01199225
- Moore, R.E. (1966), Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ.
- Neumaier, A. (2003), "Fuzzy modeling in terms of surprise", Fuzzy Set. Syst., 135, 21-38. https://doi.org/10.1016/S0165-0114(02)00248-8
- Neumaier, A. (2004), "Clouds, fuzzy sets and probability intervals", Reliab. Comput., 10, 249-272. https://doi.org/10.1023/B:REOM.0000032114.08705.cd
- Pedersen, N.L. (2000), "Maximization of eigenvalues using topology optimization", Struct. Multidiscip. O., 20, 2-11. https://doi.org/10.1007/s001580050130
- Rong, J.H., Xie, Y.M., Yang, X.Y. and Liang, Q.Q. (2002), "Topology optimization of structures under dynamic response constraints", J. Sound Vib., 234(6), 177-189.
- Sigmund, O. (2001), "A 99 topology optimization code written in Matlab", Struct. Multidiscip. O., 21, 120-127. https://doi.org/10.1007/s001580050176
- Sunaga, T. (1958), "Theory of an interval algebra and its application to numerical analysis", RAAG Memoirs, 2, 29-46.
- Zhiping, Q. (2003), "Comparison of static response of structures using convex models and interval analysis method", Int. J. Numer. Meth. Eng., 56(12), 1735-1753. https://doi.org/10.1002/nme.636
Cited by
- Performance-based topology optimization for wind-excited tall buildings: A framework vol.74, 2014, https://doi.org/10.1016/j.engstruct.2014.05.043
- The use of topology optimization in the design of truss and frame bridge girders vol.51, pp.1, 2014, https://doi.org/10.12989/sem.2014.51.1.067
- Topology optimization: a review for structural designs under vibration problems vol.53, pp.6, 2016, https://doi.org/10.1007/s00158-015-1370-5
- Non-stochastic interval factor method-based FEA for structural stress responses with uncertainty vol.62, pp.6, 2010, https://doi.org/10.12989/sem.2017.62.6.703
- Multi-material topology optimization for crack problems based on eXtended isogeometric analysis vol.37, pp.6, 2010, https://doi.org/10.12989/scs.2020.37.6.663