DOI QR코드

DOI QR Code

Calculation of eigenvalue and eigenvector derivatives with the improved Kron's substructuring method

  • Xia, Yong (Department of Civil & Structural Engineering, The Hong Kong Polytechnic University) ;
  • Weng, Shun (Department of Civil & Structural Engineering, The Hong Kong Polytechnic University) ;
  • Xu, You-Lin (Department of Civil & Structural Engineering, The Hong Kong Polytechnic University) ;
  • Zhu, Hong-Ping (School of Civil Engineering & Mechanics, Huazhong University of Science and Technology)
  • Received : 2009.08.31
  • Accepted : 2010.04.20
  • Published : 2010.09.10

Abstract

For large-scale structures, the calculation of the eigensolution and the eigensensitivity is usually very time-consuming. This paper develops the Kron's substructuring method to compute the first-order derivatives of the eigenvalues and eigenvectors with respect to the structural parameters. The global structure is divided into several substructures. The eigensensitivity of the substructures are calculated via the conventional manner, and then assembled into the eigensensitivity of the global structure by performing some constraints on the derivative matrices of the substructures. With the proposed substructuring method, the eigenvalue and eigenvector derivatives with respect to an elemental parameter are computed within the substructure solely which contains the element, while the derivative matrices of all other substructures with respect to the parameter are zero. Consequently this can reduce the computation cost significantly. The proposed substructuring method is applied to the GARTEUR AG-11 frame and a highway bridge, which is proved to be computationally efficient and accurate for calculation of the eigensensitivity. The influence of the master modes and the division formations are also discussed.

Keywords

References

  1. Bakir, P.G., Reynders, E. and Roeck, De G. (2007), "Sensitivity-based finite element model updating using constrained optimization with a trust region algorithm", J. Sound Vib., 305(1-2), 211-225. https://doi.org/10.1016/j.jsv.2007.03.044
  2. Brownjohn, J.M.W., Xia, P.Q., Hao, H. and Xia, Y. (2001), "Civil structure condition assessment by FE model updating: methodology and case studies", Finite Elem. Anal. Des., 37(10), 761-775. https://doi.org/10.1016/S0168-874X(00)00071-8
  3. Choi, D., Kim, H. and Cho, M. (2008), "Iterative method for dynamic condensation combined with substructuring scheme", J. Sound Vib., 317(1-2), 199-218. https://doi.org/10.1016/j.jsv.2008.02.046
  4. Craig, Jr. R.R. and Bampton, M.M.C. (1968), "Coupling of substructures for dynamic analysis", AIAA J., 6(7), 1313-1319. https://doi.org/10.2514/3.4741
  5. Craig, Jr. R.R. (2000), "Coupling of substructures for dynamic analysis: an overview", Proceedings of the 41st AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, AIAA-2000-1573, Atlanta, GA, April.
  6. Felippa, C.A., Park, K.C. and Justino Filho, M.R. (1998), "The construction of free-free flexibility matrices as generalized stiffness inverses", Comput. Struct., 68(4), 411-418. https://doi.org/10.1016/S0045-7949(98)00068-6
  7. Fox, R.L. and Kapoor, M.P. (1968), "Rate of change of eigenvalues and eigenvectors", AIAA J., 6(12), 2426-2429. https://doi.org/10.2514/3.5008
  8. Friswell, M.I. and Mottershead, J.E. (1995), Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers.
  9. Fulton, R.E. (1991), "Structural dynamics method for parallel supercomputers", Report for MacNeal Schwendler Corp.
  10. Hurty, W.C. (1965), "Dynamic analysis of structural systems using component modes", AIAA J., 3(4), 678-685. https://doi.org/10.2514/3.2947
  11. Kron, G. (1963), Diakoptics, Macdonald and Co., London.
  12. Lin, R.M. and Lim, M.K. (1995), "Structural sensitivity analysis via reduced-order analytical model", Comput. Meth. Appl. Mech. Eng., 121(1-4), 345-359. https://doi.org/10.1016/0045-7825(94)00738-9
  13. Lin, R.M. and Lim, M.K. (1996a), "Eigenvector derivatives of structures with rigid body modes", AIAA J., 34(5), 1083-1085. https://doi.org/10.2514/3.13195
  14. Lin, R.M., Wang, Z. and Lim, M.K. (1996b), "A practical algorithm for efficient computation of eigenvector sensitivities", Comput. Meth. Appl. Mech. Eng., 130, 355-367. https://doi.org/10.1016/0045-7825(95)00929-9
  15. MacNeal, R.H. (1971), "A hybrid method of component mode synthesis", Comput. Struct., 1(4), 581-601. https://doi.org/10.1016/0045-7949(71)90031-9
  16. Nelson, R.B. (1976), "Simplified calculation of eigenvector derivatives", AIAA J., 14(9), 1201-1205. https://doi.org/10.2514/3.7211
  17. Qiu, J.B., Ying, Z.G. and Williams, F.W. (1997), "Exact modal synthesis techniques using residual constraint modes", Int. J. Numer. Meth. Eng., 2475-2492.
  18. Rubin, S. (1975), "Improved component-mode representation for structural dynamic analysis", AIAA J., 13(8), 995-1005. https://doi.org/10.2514/3.60497
  19. Sehmi, N.S. (1986), "The Lanczos algorithm applied to Kron's method", Int. J. Numer. Meth. Eng., 23, 1857-1872. https://doi.org/10.1002/nme.1620231006
  20. Sehmi, N.S. (1989), Large Order Structural Eigenanalysis Techniques Algorithms for Finite Element Systems, Ellis Horwood Limited, Chichester, England.
  21. Simpson, A. (1973), "Eigenvalue and vector sensitivities in Kron's method", J. Sound Vib., 31(1), 73-87. https://doi.org/10.1016/S0022-460X(73)80250-0
  22. Simpson, A. and Tabarrok, B. (1968), "On Kron's eigenvalue procedure and related methods of frequency analysis", Quarterly Journal of Mechanics and Applied Mathematics, 21, 1039-1048.
  23. Song, D.T., Han, W.Z., Chen, S.H. and Qiu, Z.P. (1996), "Simplified calculation of eigenvector derivatives with repeated eigenvalues", AIAA J., 34(4), 859-861. https://doi.org/10.2514/3.13156
  24. Turner, G.L. (1983), Finite Element Modeling and Dynamic Substructuring for Prediction of Diesel Engine Vibration, Ph.D thesis, Loughborough University of Technology.
  25. Weng, S. and Xia, Y. (2007), "Substructure method in eigensolutions and model updating for large scale structures," Proceedings of the 2nd International Conference on Structural Condition Assessment, Monitoring and Improvement, Changsha, China.
  26. Weng, S., Xia, Y., Xu, Y.L., Zhou, X.Q. and Zhu, H.P. (2009), "Improved substructuring method for eigensolutions of large-scale structures", J. Sound Vib., 323(3-5), 718-736. https://doi.org/10.1016/j.jsv.2009.01.015
  27. Wu, B.S., Xu, Z.H. and Li, Z.G. (2007), "Improved Nelson's method for computing eigenvector derivatives with distinct and repeated eigenvalues", AIAA J., 45(4), 950-952. https://doi.org/10.2514/1.20880
  28. Xia, Y., Hao, H., Deeks, A.J. and Zhu, X.Q. (2008), "Condition assessment of shear connectors in slab-girder bridges via vibration measurements", J. Bridge Eng., 13(1), 43-54. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:1(43)
  29. Xia,Y. and Lin, R.M. (2004), "A new iterative order reduction (IOR) method for eigensolutions of large structures", Int. J. Numer. Meth. Eng., 59, 153-172. https://doi.org/10.1002/nme.876
  30. Yun, C.B. and Lee, H.J. (1997), "Substructural identification for damage estimation of structures", Struct. Saf., 19(1), 121-140. https://doi.org/10.1016/S0167-4730(96)00040-9

Cited by

  1. Dynamic condensation approach to calculation of structural responses and response sensitivities vol.88, 2017, https://doi.org/10.1016/j.ymssp.2016.11.025
  2. Damage Identification of Frame Structures with Joint Damage under Earthquake Excitation vol.17, pp.8, 2014, https://doi.org/10.1260/1369-4332.17.8.1075
  3. An iterative substructuring approach to the calculation of eigensolution and eigensensitivity vol.330, pp.14, 2011, https://doi.org/10.1016/j.jsv.2011.02.001
  4. Frequency-Domain Substructure Isolation for Local Damage Identification vol.18, pp.1, 2015, https://doi.org/10.1260/1369-4332.18.1.137
  5. Structural damage detection based on l 1 regularization using natural frequencies and mode shapes 2018, https://doi.org/10.1002/stc.2107
  6. A Substructuring Method for Model Updating and Damage Identification vol.14, 2011, https://doi.org/10.1016/j.proeng.2011.07.389
  7. Damage detection using the eigenparameter decomposition of substructural flexibility matrix vol.34, pp.1-2, 2013, https://doi.org/10.1016/j.ymssp.2012.08.001
  8. Damage identification using structural modes based on substructure virtual distortion method vol.20, pp.2, 2017, https://doi.org/10.1177/1369433216660018
  9. Eigensensitivity analysis of damped systems with distinct and repeated eigenvalues vol.72, 2013, https://doi.org/10.1016/j.finel.2013.04.006
  10. Numerical methods for evaluating the sensitivity of element modal strain energy vol.64, 2013, https://doi.org/10.1016/j.finel.2012.09.006
  11. Design sensitivity and Hessian matrix of generalized eigenproblems vol.43, pp.1-2, 2014, https://doi.org/10.1016/j.ymssp.2013.09.007
  12. Efficient and accurate calculation of sensitivity of damped eigensystems vol.146, 2015, https://doi.org/10.1016/j.compstruc.2014.10.004
  13. Inverse substructure method for model updating of structures vol.331, pp.25, 2012, https://doi.org/10.1016/j.jsv.2012.07.011
  14. Construction of Stiffness and Flexibility for Substructure-Based Model Updating vol.2013, 2013, https://doi.org/10.1155/2013/706798
  15. Sensitivity-Based Finite Element Model Updating Using Dynamic Condensation Approach 2017, https://doi.org/10.1142/S0219455418400047
  16. Modal Expansion Method for Eigensensitivity Calculations of Cyclically Symmetric Bladed Disks vol.56, pp.10, 2018, https://doi.org/10.2514/1.J057322
  17. A three-stage damage detection method for large-scale space structures using forward substructuring approach and enhanced bat optimization algorithm pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0636-0
  18. On eigenvalue problem of bar structures with stochastic spatial stiffness variations vol.39, pp.4, 2011, https://doi.org/10.12989/sem.2011.39.4.541
  19. Theoretical analysis for eigenvalues of general dynamical system vol.22, pp.8, 2010, https://doi.org/10.1080/09720502.2019.1700926
  20. A review on dynamic substructuring methods for model updating and damage detection of large-scale structures vol.23, pp.3, 2010, https://doi.org/10.1177/1369433219872429
  21. An enhanced substructure-based response sensitivity method for finite element model updating of large-scale structures vol.154, pp.None, 2010, https://doi.org/10.1016/j.ymssp.2020.107359