References
- Banerjee, J.R. and Gunawardana, W.D. (2007), "Dynamic stiffness matrix development and free vibration analysis of a moving beam", J. Sound Vib., 303, 135-143. https://doi.org/10.1016/j.jsv.2006.12.020
- Bert, C.W. and Zeng, H. (2004), "Analysis of axial vibration of compound bars by differential transformation method", J. Sound Vib., 275, 641-647. https://doi.org/10.1016/j.jsv.2003.06.019
- Buffinton, K.W. and Kane, T.R. (1985), "Dynamics of a beam moving over supports", Int. J. Solids Struct., 21, 617-643. https://doi.org/10.1016/0020-7683(85)90069-1
- Catal, S. (2006), "Analysis of free vibration of beam on elastic soil using differential transform method", Struct. Eng. Mech., 24(1), 51-62. https://doi.org/10.12989/sem.2006.24.1.051
- Catal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Model., 32, 1744-1757. https://doi.org/10.1016/j.apm.2007.06.010
- Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24(2), 247-268. https://doi.org/10.12989/sem.2006.24.2.247
- Cepon, G. and Boltezar, M. (2007), "Computing the dynamic response of an axially moving continuum", J. Sound Vib., 300, 316-329. https://doi.org/10.1016/j.jsv.2006.08.014
- Chen, C.K. and Ho, S.H. (1996), "Application of differential transformation to eigenvalue problem", J. Appl. Math. Comput., 79, 173-188. https://doi.org/10.1016/0096-3003(95)00253-7
- Chen, C.K. and Ho, S.H. (1999), "Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform", Int. J. Mech. Sci., 41, 1339-1356. https://doi.org/10.1016/S0020-7403(98)00095-2
- Chen, L.Q. and Wang, B. (2009), "Stability of axially accelerating viscoelastic beams: Asymptotic perturbation analysis and differential quadrature validation", Eur. J. Mech. A-Solid., 28, 786-791. https://doi.org/10.1016/j.euromechsol.2008.12.002
- Chen, L.Q. and Yang, X.D. (2007), "Nonlinear free transverse vibration of an axially moving beam: Comparison of two models", J. Sound Vib., 299, 348-354. https://doi.org/10.1016/j.jsv.2006.06.045
- Chen, S.H., Huang, J.L. and Sze, K.Y. (2007), "Multidimensional Lindstedt-Poincare method for nonlinear vibration of axially moving beams", J. Sound Vib., 306, 1-11. https://doi.org/10.1016/j.jsv.2007.05.038
- Ho, S.H. and Chen, C.K. (2006), "Free transverse vibration of an axially loaded non-uniform sinning twisted Timoshenko beam using differential transform", Int. J. Mech. Sci., 48, 1323-1331. https://doi.org/10.1016/j.ijmecsci.2006.05.002
- Hwang, S.J. and Perkins, N.C. (1992a), "Supercritical stability of an axially moving beam, part I: Model and equilibrium analysis", J. Sound Vib., 154, 381-396. https://doi.org/10.1016/0022-460X(92)90774-R
- Hwang, S.J. and Perkins, N.C. (1992b), "Supercritical stability of an axially moving beam, part II: Vibration and stability analysis", J. Sound Vib., 154, 397-409. https://doi.org/10.1016/0022-460X(92)90775-S
- Jang, M.J. and Chen, C.L. (1997), "Analysis of the response of a strongly non-linear damped system using a differential transformation technique", Appl. Math. Comput., 88, 137-151. https://doi.org/10.1016/S0096-3003(96)00308-6
- Kaya, M.O. and Ozgumus, O.O. (2007), "Flexural-torsional-coupled vibration analysis of axially loaded closedsection composite Timoshenko beam by using DTM", J. Sound Vib., 306, 495-506. https://doi.org/10.1016/j.jsv.2007.05.049
- Lee, U. and Jang, J. (2007), "On the boundary conditions for axially moving beams", J. Sound Vib., 306, 675-690. https://doi.org/10.1016/j.jsv.2007.06.039
- Malik, M. and Dang, H.H. (1998), "Vibration analysis of continuous systems by differential transformation", Appl. Math. Comput., 96, 17-26. https://doi.org/10.1016/S0096-3003(97)10076-5
- Oz, H.R. (2001), "On the vibrations of an axially travelling beam on fixed supports with variable velocity", J. Sound Vib., 239, 556-564. https://doi.org/10.1006/jsvi.2000.3077
- Oz, H.R. (2003), "Natural frequencies of axially travelling tensioned beam in contact with a stationary mass", J. Sound Vib., 259, 445-456. https://doi.org/10.1006/jsvi.2002.5157
- Oz, H.R. and Pakdemirli, M. (1999), "Vibrations of an axially moving beam with time dependent velocity", J. Sound Vib., 227, 239-257. https://doi.org/10.1006/jsvi.1999.2247
- Ozdemir, O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289, 413-420. https://doi.org/10.1016/j.jsv.2005.01.055
- Ozgumus, O.O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of double tapered rotating Euler- Bernoulli beam by using the differential transform method", Meccanica, 41, 661-670. https://doi.org/10.1007/s11012-006-9012-z
- Ozgumus, O.O. and Kaya, M.O. (2007), "Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending-torsion coupling", Int. J. Eng. Sci., 45, 562-586. https://doi.org/10.1016/j.ijengsci.2007.04.005
- Ozkaya, E. and Oz, H.R. (2002), "Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method", J. Sound Vib., 252, 782-789. https://doi.org/10.1006/jsvi.2001.3991
- Pellicano, F. (2005), "On the dynamic properties of axially moving systems", J. Sound Vib., 281, 593-609. https://doi.org/10.1016/j.jsv.2004.01.029
- Rajasekaran, S. (2008), "Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods", Struct. Eng. Mech., 28(2), 221-238. https://doi.org/10.12989/sem.2008.28.2.221
- Sreeram, T.R. and Sivaneri, N.T. (1998), "FE-analysis of a moving beam using Lagrangian multiplier method", Int. J. Solids Struct., 35, 3675-3694. https://doi.org/10.1016/S0020-7683(97)00230-8
- Tabarrok, B., Leech, C.M. and Kim, Y.I. (1974), "On the dynamics of an axially moving beam", J. Franklin I., 297, 201-220. https://doi.org/10.1016/0016-0032(74)90104-5
- Tang, Y.Q., Chen, L.Q. and Yang, X.D. (2008), "Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary conditions", Int. J. Mech. Sci., 50, 1448-1458. https://doi.org/10.1016/j.ijmecsci.2008.09.001
- Wickert, J.A. and Mote, C.D. (1990), "Classical vibration analysis of axially moving continua", J. Appl. Mech., 57, 738-744. https://doi.org/10.1115/1.2897085
- Yesilce, Y. and Catal, S. (2009), "Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method", Struct. Eng. Mech., 31(4), 453-476. https://doi.org/10.12989/sem.2009.31.4.453
- Zhou, J.K. (1986), Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, Wuhan China.
Cited by
- Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.847
- Lateral-Torsional Buckling of Nonuniformly Loaded Beam Using Differential Transformation Method vol.16, pp.07, 2016, https://doi.org/10.1142/S0219455415500340
- Response of forced Euler-Bernoulli beams using differential transform method vol.42, pp.1, 2010, https://doi.org/10.12989/sem.2012.42.1.095
- Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline vol.62, pp.1, 2010, https://doi.org/10.12989/sem.2017.62.1.065