DOI QR코드

DOI QR Code

Differential transform method for free vibration analysis of a moving beam

  • Yesilce, Yusuf (Civil Engineering Department, Engineering Faculty, Dokuz Eylul University)
  • Received : 2009.08.20
  • Accepted : 2010.04.30
  • Published : 2010.07.30

Abstract

In this study, the Differential Transform Method (DTM) is employed in order to solve the governing differential equation of a moving Bernoulli-Euler beam with axial force effect and investigate its free flexural vibration characteristics. The free vibration analysis of a moving Bernoulli-Euler beam using DTM has not been investigated by any of the studies in open literature so far. At first, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Bernoulli-Euler beam theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equation of the motion. The calculated natural frequencies of the moving beams with various combinations of boundary conditions using DTM are tabulated in several tables and are compared with the results of the analytical solution where a very good agreement is observed.

Keywords

References

  1. Banerjee, J.R. and Gunawardana, W.D. (2007), "Dynamic stiffness matrix development and free vibration analysis of a moving beam", J. Sound Vib., 303, 135-143. https://doi.org/10.1016/j.jsv.2006.12.020
  2. Bert, C.W. and Zeng, H. (2004), "Analysis of axial vibration of compound bars by differential transformation method", J. Sound Vib., 275, 641-647. https://doi.org/10.1016/j.jsv.2003.06.019
  3. Buffinton, K.W. and Kane, T.R. (1985), "Dynamics of a beam moving over supports", Int. J. Solids Struct., 21, 617-643. https://doi.org/10.1016/0020-7683(85)90069-1
  4. Catal, S. (2006), "Analysis of free vibration of beam on elastic soil using differential transform method", Struct. Eng. Mech., 24(1), 51-62. https://doi.org/10.12989/sem.2006.24.1.051
  5. Catal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Model., 32, 1744-1757. https://doi.org/10.1016/j.apm.2007.06.010
  6. Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24(2), 247-268. https://doi.org/10.12989/sem.2006.24.2.247
  7. Cepon, G. and Boltezar, M. (2007), "Computing the dynamic response of an axially moving continuum", J. Sound Vib., 300, 316-329. https://doi.org/10.1016/j.jsv.2006.08.014
  8. Chen, C.K. and Ho, S.H. (1996), "Application of differential transformation to eigenvalue problem", J. Appl. Math. Comput., 79, 173-188. https://doi.org/10.1016/0096-3003(95)00253-7
  9. Chen, C.K. and Ho, S.H. (1999), "Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform", Int. J. Mech. Sci., 41, 1339-1356. https://doi.org/10.1016/S0020-7403(98)00095-2
  10. Chen, L.Q. and Wang, B. (2009), "Stability of axially accelerating viscoelastic beams: Asymptotic perturbation analysis and differential quadrature validation", Eur. J. Mech. A-Solid., 28, 786-791. https://doi.org/10.1016/j.euromechsol.2008.12.002
  11. Chen, L.Q. and Yang, X.D. (2007), "Nonlinear free transverse vibration of an axially moving beam: Comparison of two models", J. Sound Vib., 299, 348-354. https://doi.org/10.1016/j.jsv.2006.06.045
  12. Chen, S.H., Huang, J.L. and Sze, K.Y. (2007), "Multidimensional Lindstedt-Poincare method for nonlinear vibration of axially moving beams", J. Sound Vib., 306, 1-11. https://doi.org/10.1016/j.jsv.2007.05.038
  13. Ho, S.H. and Chen, C.K. (2006), "Free transverse vibration of an axially loaded non-uniform sinning twisted Timoshenko beam using differential transform", Int. J. Mech. Sci., 48, 1323-1331. https://doi.org/10.1016/j.ijmecsci.2006.05.002
  14. Hwang, S.J. and Perkins, N.C. (1992a), "Supercritical stability of an axially moving beam, part I: Model and equilibrium analysis", J. Sound Vib., 154, 381-396. https://doi.org/10.1016/0022-460X(92)90774-R
  15. Hwang, S.J. and Perkins, N.C. (1992b), "Supercritical stability of an axially moving beam, part II: Vibration and stability analysis", J. Sound Vib., 154, 397-409. https://doi.org/10.1016/0022-460X(92)90775-S
  16. Jang, M.J. and Chen, C.L. (1997), "Analysis of the response of a strongly non-linear damped system using a differential transformation technique", Appl. Math. Comput., 88, 137-151. https://doi.org/10.1016/S0096-3003(96)00308-6
  17. Kaya, M.O. and Ozgumus, O.O. (2007), "Flexural-torsional-coupled vibration analysis of axially loaded closedsection composite Timoshenko beam by using DTM", J. Sound Vib., 306, 495-506. https://doi.org/10.1016/j.jsv.2007.05.049
  18. Lee, U. and Jang, J. (2007), "On the boundary conditions for axially moving beams", J. Sound Vib., 306, 675-690. https://doi.org/10.1016/j.jsv.2007.06.039
  19. Malik, M. and Dang, H.H. (1998), "Vibration analysis of continuous systems by differential transformation", Appl. Math. Comput., 96, 17-26. https://doi.org/10.1016/S0096-3003(97)10076-5
  20. Oz, H.R. (2001), "On the vibrations of an axially travelling beam on fixed supports with variable velocity", J. Sound Vib., 239, 556-564. https://doi.org/10.1006/jsvi.2000.3077
  21. Oz, H.R. (2003), "Natural frequencies of axially travelling tensioned beam in contact with a stationary mass", J. Sound Vib., 259, 445-456. https://doi.org/10.1006/jsvi.2002.5157
  22. Oz, H.R. and Pakdemirli, M. (1999), "Vibrations of an axially moving beam with time dependent velocity", J. Sound Vib., 227, 239-257. https://doi.org/10.1006/jsvi.1999.2247
  23. Ozdemir, O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289, 413-420. https://doi.org/10.1016/j.jsv.2005.01.055
  24. Ozgumus, O.O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of double tapered rotating Euler- Bernoulli beam by using the differential transform method", Meccanica, 41, 661-670. https://doi.org/10.1007/s11012-006-9012-z
  25. Ozgumus, O.O. and Kaya, M.O. (2007), "Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending-torsion coupling", Int. J. Eng. Sci., 45, 562-586. https://doi.org/10.1016/j.ijengsci.2007.04.005
  26. Ozkaya, E. and Oz, H.R. (2002), "Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method", J. Sound Vib., 252, 782-789. https://doi.org/10.1006/jsvi.2001.3991
  27. Pellicano, F. (2005), "On the dynamic properties of axially moving systems", J. Sound Vib., 281, 593-609. https://doi.org/10.1016/j.jsv.2004.01.029
  28. Rajasekaran, S. (2008), "Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods", Struct. Eng. Mech., 28(2), 221-238. https://doi.org/10.12989/sem.2008.28.2.221
  29. Sreeram, T.R. and Sivaneri, N.T. (1998), "FE-analysis of a moving beam using Lagrangian multiplier method", Int. J. Solids Struct., 35, 3675-3694. https://doi.org/10.1016/S0020-7683(97)00230-8
  30. Tabarrok, B., Leech, C.M. and Kim, Y.I. (1974), "On the dynamics of an axially moving beam", J. Franklin I., 297, 201-220. https://doi.org/10.1016/0016-0032(74)90104-5
  31. Tang, Y.Q., Chen, L.Q. and Yang, X.D. (2008), "Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary conditions", Int. J. Mech. Sci., 50, 1448-1458. https://doi.org/10.1016/j.ijmecsci.2008.09.001
  32. Wickert, J.A. and Mote, C.D. (1990), "Classical vibration analysis of axially moving continua", J. Appl. Mech., 57, 738-744. https://doi.org/10.1115/1.2897085
  33. Yesilce, Y. and Catal, S. (2009), "Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method", Struct. Eng. Mech., 31(4), 453-476. https://doi.org/10.12989/sem.2009.31.4.453
  34. Zhou, J.K. (1986), Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, Wuhan China.

Cited by

  1. Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.847
  2. Lateral-Torsional Buckling of Nonuniformly Loaded Beam Using Differential Transformation Method vol.16, pp.07, 2016, https://doi.org/10.1142/S0219455415500340
  3. Response of forced Euler-Bernoulli beams using differential transform method vol.42, pp.1, 2010, https://doi.org/10.12989/sem.2012.42.1.095
  4. Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline vol.62, pp.1, 2010, https://doi.org/10.12989/sem.2017.62.1.065