References
- Ahn, J.H., Jung, C.Y. and Kim, S.H. (2010), "Evaluation on structural behaviors of prestressed composite beams using external prestressing member", Struct. Eng. Mech., 34(2), 247-275. https://doi.org/10.12989/sem.2010.34.2.247
- Alkhairi, F.M. and Naaman, A.E. (1993), "Analysis of beams prestressed with unbonded internal or external tendons", J. Struct. Eng.-ASCE, 119(9), 2680-2700. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:9(2680)
- Ariyawardena, N. and Ghali, A. (2002), "Prestressing with unbonded internal or external tendons: Analysis and computer model", J. Struct. Eng.-ASCE, 128(12), 1493-1501. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1493)
- Aziz, M.A., Abdel-Sayed, G., Ghrib, F., Grace, N.F. and Madugula, M.K.S. (2005), "Analysis of concrete beams prestressed and post-tensioned with externally unbonded carbon fiber reinforced polymer tendons", Can. J. Civil Eng., 31, 1138-1151.
- Chen, S., Jia, Y. and Wang, X. (2009), "Experimental study of moment redistribution and load carrying capacity of externally prestressed continuous composite beams", Struct. Eng. Mech., 31(5), 605-619. https://doi.org/10.12989/sem.2009.31.5.605
- Dall'Asta, A. (1996), "On the coupling between three-dimensional bodies and slipping cables", Int. J. Solids Struct., 33(24), 3587-3600. https://doi.org/10.1016/0020-7683(95)00204-9
- Dall'Asta, A., Ragni, L. and Zona, A. (2007), "Analytical model for geometric and material nonlinear analysis of externally prestressed beams", J. Eng. Mech.-ASCE, 133(1), 117-121. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(117)
- El-Ariss, B. (2004), "Stiffness of reinforced concrete beams with external tendons", Eng. Struct., 26, 2047-2051. https://doi.org/10.1016/j.engstruct.2004.04.009
- Harajli, M., Khairallah, N. and Nassif, H. (1999), "Externally prestressed members: evaluation of second-order effects", J. Struct. Eng.-ASCE, 125(10), 1151-1161. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1151)
- Hognestad, E. (1951), "A study of combined bending and axial load in reinforced concrete members", Bulletin No. 399, University of Illinois Engineering Experiment Station, Urbana, IL, USA.
- Kwak, H.G. and Kim, S.P. (2002), "Nonlinear analysis of RC beams based on moment-curvature relation", Comput. Struct., 80, 615-628. https://doi.org/10.1016/S0045-7949(02)00030-5
- Lam, W.F. and Morley, C.T. (1992), "Arc-length method for passing limit points in structural calculation", J. Struct. Eng.-ASCE, 118(1), 169-185. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:1(169)
- Lou, T.J. and Xiang, Y.Q. (2006), "Finite element modeling of concrete beams prestressed with external tendons", Eng. Struct., 28(14), 1919-1926. https://doi.org/10.1016/j.engstruct.2006.03.020
- Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded reinforced concrete plane frames", IABSE Preliminary Report for Symposium on Resistance and Ultimate Deformability of Structures Acted on Well-defined Repeated Loads, Lisbon.
- Ng, C.K. and Tan, K.H. (2006), "Flexural behaviour of externally prestressed beams. Part I: Analytical model", Eng. Struct., 28, 609-621. https://doi.org/10.1016/j.engstruct.2005.09.015
- Pisani, M.A. (2005), "Geometrical nonlinearity and length of external tendons", J. Bridge Eng.-ASCE, 10(3), 302-311. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:3(302)
- Ramos, G. and Aparicio, A.C. (1996), "Ultimate analysis of monolithic and segmental externally prestressed concrete bridges", J. Bridge Eng.-ASCE, 1(1), 10-17. https://doi.org/10.1061/(ASCE)1084-0702(1996)1:1(10)
- Zona, A., Ragni, L. and Dall'Asta, A. (2008), "Finite element formulation for geometric and material nonlinear analysis of beams prestressed with external slipping tendons", Finite Elem. Anal. Des., 44, 910-919. https://doi.org/10.1016/j.finel.2008.06.005
Cited by
- Numerical modeling of externally prestressed steel–concrete composite beams vol.121, 2016, https://doi.org/10.1016/j.jcsr.2016.02.008
- Behaviour under long-term loading of externally prestressed concrete beams vol.160, 2018, https://doi.org/10.1016/j.engstruct.2018.01.029
- Flexure of continuous HSC beams with external CFRP tendons: Effects of fibre elastic modulus and steel ratio vol.116, 2014, https://doi.org/10.1016/j.compstruct.2014.05.001
- Numerical analysis of behaviour of concrete beams with external FRP tendons vol.35, 2012, https://doi.org/10.1016/j.conbuildmat.2012.04.055
- Behaviour of continuous prestressed concrete beams with external tendons vol.55, pp.6, 2015, https://doi.org/10.12989/sem.2015.55.6.1099
- Interaction between Time-Dependent and Second-Order Effects of Externally Posttensioned Members vol.20, pp.11, 2015, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000761
- Flexural Response of Continuous Concrete Beams Prestressed with External Tendons vol.18, pp.6, 2013, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000392
- Nonlinear shear strength of pre-stressed concrete beams vol.41, pp.4, 2010, https://doi.org/10.12989/sem.2012.41.4.441
- Behavior and stress check of concrete box girders strengthened by external prestressing vol.22, pp.2, 2018, https://doi.org/10.12989/cac.2018.22.2.133
- Nonlinear finite element simulation of unbonded prestressed concrete beams vol.170, pp.None, 2010, https://doi.org/10.1016/j.engstruct.2018.05.077
- Numerical and Analytical Behavior of Beams Prestressed with Unbonded Internal or External Steel Tendons: A State-of-the-Art Review vol.44, pp.10, 2010, https://doi.org/10.1007/s13369-019-03934-3
- Effect of geometrical properties on strength of externally prestressed steel-concrete composite beams vol.173, pp.1, 2010, https://doi.org/10.1680/jstbu.17.00172
- Friction element for non-linear analysis of friction effect in externally prestressed beams vol.173, pp.3, 2020, https://doi.org/10.1680/jstbu.18.00040
- Assessment of Second-Order Effect in Externally Prestressed Steel-Concrete Composite Beams vol.26, pp.6, 2010, https://doi.org/10.1061/(asce)be.1943-5592.0001718