References
- Chandraputla, T.R. and Belegunda, A.D. (2002), Introduction to Finite Elements in Engineering, Prentice-Hall, Inc.
- Collins, J.A. (2003), Mechanical Design of Machine Elements and Machines, John Willey and Sons.
- Desktop Engineering (DE), http://www.deskeng.com
- Enomoto, N. (1955), "On fatigue tests under progressive stress", Proc. Am. Soc. Test. Mater., 55, 903-917.
- Feltner, C.E. and Morrow, J.D. (1961), "Micro plastic strain hysteresis energy as a criterion for fatigue facture", J. Basic Eng., Tran. ASME, 83, 15-22. https://doi.org/10.1115/1.3658884
- Fermer, M. and Svensson, H. (2001), "Industrial experiences of FE-based fatigue life predictions of welded automotive structures", Fatigue Fract. Eng. M., 24(7), 489-500. https://doi.org/10.1046/j.1460-2695.2001.00409.x
- George, T., Seidt, J., Shen, M.H.H., Cross, C. and Nicholas, T. (2004), "Development of a novel vibration-based fatigue testing methodology", Int. J. Fatigue, 26(5), 477-486. https://doi.org/10.1016/j.ijfatigue.2003.10.012
- George, T., Shen, M.H.H., Cross, C. and Nicholas, T. (2006), "A new multiaxial fatigue testing method for variable-amplitude loading and stress ratio", J. Eng. Gas Turb. Power, 128, 857-864. https://doi.org/10.1115/1.1788687
- George, T., Shen, M.H.H., Scott-Emuakpor, O., Cross, C., Nicholas, T. and Calcaterra, J. (2005), "Goodman diagram via vibration-based fatigue testing", J. Eng. Mater. Technol., 127(1), 58-64. https://doi.org/10.1115/1.1836791
- Goodman, J. (1899), Mechanics Applied to Engineering, Longmans, Green and Co., London.
- Khurram, R.A. and Masud, A. (2006), "A multiscale/stablized formulation of the incompressible navier-stokes equations for moving boundary flows and fluid structure interaction", Comput. Mech., 38, 4-5.
- Lee, H.J. and Song, J.H. (2005), "Finite-element analysis of fatigue crack closure under plane strain conditions: stabilization behavior and mesh size effect", Fatigue Fract. Eng. M., 28(3), 333-342. https://doi.org/10.1111/j.1460-2695.2005.00881.x
- LMS Engineering Innovations, http://www.lmsintl.com
- Masud, A. and Khurram, R.A. (2004), "Multiscale finite element method for the incompressible navier-stokes equations", Comput. Meth. Appl. Mech. Eng., 193, 21-22.
- McClintock, F.A. and Argon, A.S. (1966), Mechanical Behavior of Material, Addison Wesley.
- Meirovitch, L. (2001), Fundamentals of Vibration, McGraw-Hill Company, New York.
- Miyano, T. (2003), "High cycle fatigue specimen topology design", MS Thesis, The Ohio State University.
- MSC Software, http://www.mscsoftware.com
- Nicholas, T. (1999), "Critical issues in high cycles fatigue", Int. J. Fatigue, 21, 221-231. https://doi.org/10.1016/S0142-1123(99)00074-2
- Nicholas, T. and Maxwell, D. (2002), "Mean stress effects on the high cycle fatigue limit stress in Ti-6Al-4V", Fatigue Fract. Mech., ASTM STP 1417, 33, 476-492.
- Papanikos, P., Tserpes, K.I. and Pantelakis, S.P. (2003), "Modeling of fatigue damage progression and life of CFRP laminates", Fatigue Fract. Eng. M., 26(1), 37-47. https://doi.org/10.1046/j.1460-2695.2003.00585.x
- Reddy, J.N. (1984), An Introduction to the Finite Element Methods, McGraw-Hill Book Company, New York.
- Reddy, J.N. (2004), An Introduction to Non-Linear Finite Element Analysis, Oxford University Press, New York.
- Salvini, P., Cardecchhia, E. and Emofonti, G. (1997), "A procedure for fatigue life prediction of spot welded joints", Fatigue Fract. Eng. M., 20(8), 1117-1128. https://doi.org/10.1111/j.1460-2695.1997.tb00317.x
- Scott-Emuakpor, O. (2007), "Development of a noval energy based method for multiaxial fatigue strength assessment", Graduate Program of Mechanical Engineering, The Ohio State University.
- Scott-Emuakpor, O., Shen, M.H.H., Cross, C., Calcaterra, J. and George, T. (2007), "Development of an improved high cycle fatigue criterion", J. Eng. Gas Turb. Power, 129, 162-169. https://doi.org/10.1115/1.2360599
- Stowell, E. (1996), "A study of the energy criterion for fatigue", Nucl. Eng. Des., 3, 32-40.
- Sumi, Y., Mohri, M. and Kawamura, Y. (2005), "Computational prediction of fatigue crack paths in ship structural details", Fatigue Fract. Eng. M., 28(1-2), 107-115. https://doi.org/10.1111/j.1460-2695.2004.00850.x
- Tarar, W. (2008), "A new finite element procedure for fatigue life prediction and high strain rate assessment of AHSS", PhD Dissertation, The Ohio State University.
- Tarar, W., Scott-Emuakpor, O. and Shen, M.H. (2007), "A new finite element for gas turbine engine fatigue life prediction", Proceedings of ASME/IGTI Turbo Expo, GT2007-27427.
Cited by
- A modified closed form energy-based framework for fatigue life assessment for aluminum 6061-T6: Strain range approach vol.25, pp.5, 2016, https://doi.org/10.1177/1056789516635726
- Structural design of transom pod for outboard motor in polyethylene boat vol.31, pp.12, 2017, https://doi.org/10.1007/s12206-017-1118-9
- Strain Rate and Loading Waveform Effects on an Energy-Based Fatigue Life Prediction for AL6061-T6 vol.136, pp.2, 2013, https://doi.org/10.1115/1.4025497
- A Modified Closed Form Energy Based Framework for Fatigue Life Assessment for Aluminum 6061-T6-Damaging Energy Approach vol.137, pp.2, 2010, https://doi.org/10.1115/1.4029532
- Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue vol.77, pp.2, 2010, https://doi.org/10.12989/sem.2021.77.2.197