References
- Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications (1st Edition), CRC Press, Boca Raton, FL.
- Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Boroomand, B., Tabatabaei, A.A. and Onate, E. (2005), "Simple modifications for stabilization of the finite point method", Int. J. Numer. Meth. Eng., 63, 351-379. https://doi.org/10.1002/nme.1278
- Chen, W. and Hon, Y.C. (2003), "Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems", Comput. Meth. Appl. Mech. Eng., 192, 1859-1875. https://doi.org/10.1016/S0045-7825(03)00216-0
- Cleveland, W.S. (1993), Visualizing Data, AT&T Bell Laboratories, Murry Hill, NJ.
- De, S. and Bathe, K.J. (2000), "The method of finite spheres", Comput. Mech., 25, 329-349. https://doi.org/10.1007/s004660050481
- Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to nonspherical stars", Mon. Not. R. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
- Golberg, M.A. (1995), "The method of fundamental solutions for Poisson's equation", Eng. Anal. Bound. Elem., 16, 205-213. https://doi.org/10.1016/0955-7997(95)00062-3
- Kansa, E.J. (1990), "Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations", Comput. Math. Appl., 19, 147-161.
- Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
- Lee, S.H. and Yoon, Y.C. (2004), "Meshfree point collocation method for elasticity and crack problems", Int. J. Numer. Meth. Eng., 61, 22-48. https://doi.org/10.1002/nme.1053
- Liszka, T.J., Duarte, C.A.M. and Tworzydlo, W.W. (1996), "hp-Meshless cloud method", Comput. Meth. Appl. Mech. Eng., 139, 263-288. https://doi.org/10.1016/S0045-7825(96)01086-9
- Liu, G.R. and Gu, Y.T. (2001a), "A point interpolation method for two-dimensional solids", Int. J. Numer. Meth. Eng., 50, 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
- Liu, G.R. and Gu, Y.T. (2001b), "A local point interpolation method for stress analysis of two-dimensional solids", Struct. Eng. Mech., 11, 221-236. https://doi.org/10.12989/sem.2001.11.2.221
- Liu, G.R. and Gu, Y.T. (2001c), "A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids", J. Sound Vib., 246, 29-46. https://doi.org/10.1006/jsvi.2000.3626
- Liu, G.R. and Gu, Y.T. (2003), "A meshfree method: meshfree weak-strong (MWS) form method for 2D solids", Comput. Mech., 33, 2-14. https://doi.org/10.1007/s00466-003-0477-5
- Liu, G.R., Kee, B.B.T. and Chun, L. (2006a), "A stabilized least-squares radial point collocation method (LSRPCM) for adaptive analysis", Comput. Meth. Appl. Mech. Eng., 195, 4843-4861. https://doi.org/10.1016/j.cma.2005.11.015
- Liu, G.R., Li, Y. and Dai, K.Y. (2006b), "A linearly conforming radial point interpolation method for solid mechanics problems", Int. J. Comput. Meth., 3, 401-428. https://doi.org/10.1142/S0219876206001132
- Liu, G.R., Dai, K.Y., Han, X. and Li, Y. (2006c), "A mesh-free minimum length method for 2-D problems", Comput. Mech., 38, 533-550. https://doi.org/10.1007/s00466-005-0003-z
- Liu, X., Liu, G.R., Tai, K. and Lam, K.Y. (2005), "Radial point interpolation collocation method for the solution of partial differential equations", Comput. Math. Appl., 50, 1425-1442. https://doi.org/10.1016/j.camwa.2005.02.019
- Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fl., 20, 1081-1106. https://doi.org/10.1002/fld.1650200824
- Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astron. J., 82(12), 1013-1024. https://doi.org/10.1086/112164
- Moran, B. and Shih, C.F. (1978), "Crack tip and associated domain integrals from momentum and energy balance", Eng. Fract. Mech., 27, 615-641.
- Nayroles, B., Touzot, G. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 307-318. https://doi.org/10.1007/BF00364252
- Onate, E., Idelsohn, S., Zienkiewicz, O.C. and Taylor, R.L. (1996), "A finite point method in computational mechanics: applications to convective transport and fluid flow", Int. J. Numer. Meth. Eng., 139, 3839-3866.
- Perrone, N. and Kao, R. (1975), "A general finite difference method for arbitrary meshes", Comput. Struct., 5, 45-58. https://doi.org/10.1016/0045-7949(75)90018-8
- Sadeghirad, A. and Mahmoudzadeh Kani, I. (2009) "Modified equilibrium on line method for imposition of Neumann boundary conditions in meshless collocation methods", Commun. Numer. Meth. En., 25, 147-171. https://doi.org/10.1002/cnm.1114
- Sadeghirad, A., Mahmoudzadeh Kani, I., Noorzad, A., Rahimian, M. and Vaziri Astaneh, A. (2010), "Elastic fracture analyses using an enriched collocation method", Arab. J. Sci. Eng., 35, 165-181.
- Sadeghirad, A., Mahmoudzadeh Kani, I., Rahimian, M. and Vaziri Astaneh, A. (2009), "A numerical approach based on the meshless collocation method in elastodynamics", Acta Mech. Sinica., 25, 857-870. https://doi.org/10.1007/s10409-009-0236-8
- Sadeghirad, A. and Mohammadi, S. (2007), "Equilibrium on line method (ELM) for imposition of Neumann boundary conditions in the finite point method (FPM)", Int. J. Numer. Meth. Eng., 69, 60-86. https://doi.org/10.1002/nme.1755
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Edition, McGraw Hill, New York.
- Wang, J.G., Liu, G.R. and Wu, Y.G. (2001), "A point interpolation method for simulating dissipation process of consolidation", Cornput. Method. Appl. Mech. Eng., 190, 5907-5922. https://doi.org/10.1016/S0045-7825(01)00204-3
- Zhang, X., Liu, X.H., Song, K.Z. and Lu, M.W. (2001), "Least-squares collocation meshless method", Int. J. Numer. Meth. Eng., 51(9), 1089-1100. https://doi.org/10.1002/nme.200
- Zhu, T., Zhang, J.D. and Atluri, S.N. (1998), "Local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach", Comput. Mech., 21(3), 223-235. https://doi.org/10.1007/s004660050297
Cited by
- A simple meshless method for challenging engineering problems vol.32, pp.6, 2015, https://doi.org/10.1108/EC-06-2014-0131
- A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates vol.39, pp.4, 2010, https://doi.org/10.12989/sem.2011.39.4.579