DOI QR코드

DOI QR Code

Meshless equilibrium on line method (MELM) for linear elasticity

  • Sadeghirad, A. (School of Civil Engineering, University of Tehran) ;
  • Mohammadi, S. (School of Civil Engineering, University of Tehran) ;
  • Kani, I. Mahmoudzadeh (School of Civil Engineering, University of Tehran)
  • Received : 2007.07.02
  • Accepted : 2010.02.19
  • Published : 2010.07.10

Abstract

As a truly meshfree method, meshless equilibrium on line method (MELM), for 2D elasticity problems is presented. In MELM, the problem domain is represented by a set of distributed nodes, and equilibrium is satisfied on lines for any node within this domain. In contrary to conventional meshfree methods, test domains are lines in this method, and all integrals can be easily evaluated over straight lines along x and y directions. Proposed weak formulation has the same concept as the equilibrium on line method which was previously used by the authors for enforcement of the Neumann boundary conditions in the strong-form meshless methods. In this paper, the idea of the equilibrium on line method is developed to use as the weak forms of the governing equations at inner nodes of the problem domain. The moving least squares (MLS) approximation is used to interpolate solution variables in this paper. Numerical studies have shown that this method is simple to implement, while leading to accurate results.

Keywords

References

  1. Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications (1st Edition), CRC Press, Boca Raton, FL.
  2. Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
  3. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  4. Boroomand, B., Tabatabaei, A.A. and Onate, E. (2005), "Simple modifications for stabilization of the finite point method", Int. J. Numer. Meth. Eng., 63, 351-379. https://doi.org/10.1002/nme.1278
  5. Chen, W. and Hon, Y.C. (2003), "Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems", Comput. Meth. Appl. Mech. Eng., 192, 1859-1875. https://doi.org/10.1016/S0045-7825(03)00216-0
  6. Cleveland, W.S. (1993), Visualizing Data, AT&T Bell Laboratories, Murry Hill, NJ.
  7. De, S. and Bathe, K.J. (2000), "The method of finite spheres", Comput. Mech., 25, 329-349. https://doi.org/10.1007/s004660050481
  8. Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to nonspherical stars", Mon. Not. R. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
  9. Golberg, M.A. (1995), "The method of fundamental solutions for Poisson's equation", Eng. Anal. Bound. Elem., 16, 205-213. https://doi.org/10.1016/0955-7997(95)00062-3
  10. Kansa, E.J. (1990), "Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations", Comput. Math. Appl., 19, 147-161.
  11. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  12. Lee, S.H. and Yoon, Y.C. (2004), "Meshfree point collocation method for elasticity and crack problems", Int. J. Numer. Meth. Eng., 61, 22-48. https://doi.org/10.1002/nme.1053
  13. Liszka, T.J., Duarte, C.A.M. and Tworzydlo, W.W. (1996), "hp-Meshless cloud method", Comput. Meth. Appl. Mech. Eng., 139, 263-288. https://doi.org/10.1016/S0045-7825(96)01086-9
  14. Liu, G.R. and Gu, Y.T. (2001a), "A point interpolation method for two-dimensional solids", Int. J. Numer. Meth. Eng., 50, 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
  15. Liu, G.R. and Gu, Y.T. (2001b), "A local point interpolation method for stress analysis of two-dimensional solids", Struct. Eng. Mech., 11, 221-236. https://doi.org/10.12989/sem.2001.11.2.221
  16. Liu, G.R. and Gu, Y.T. (2001c), "A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids", J. Sound Vib., 246, 29-46. https://doi.org/10.1006/jsvi.2000.3626
  17. Liu, G.R. and Gu, Y.T. (2003), "A meshfree method: meshfree weak-strong (MWS) form method for 2D solids", Comput. Mech., 33, 2-14. https://doi.org/10.1007/s00466-003-0477-5
  18. Liu, G.R., Kee, B.B.T. and Chun, L. (2006a), "A stabilized least-squares radial point collocation method (LSRPCM) for adaptive analysis", Comput. Meth. Appl. Mech. Eng., 195, 4843-4861. https://doi.org/10.1016/j.cma.2005.11.015
  19. Liu, G.R., Li, Y. and Dai, K.Y. (2006b), "A linearly conforming radial point interpolation method for solid mechanics problems", Int. J. Comput. Meth., 3, 401-428. https://doi.org/10.1142/S0219876206001132
  20. Liu, G.R., Dai, K.Y., Han, X. and Li, Y. (2006c), "A mesh-free minimum length method for 2-D problems", Comput. Mech., 38, 533-550. https://doi.org/10.1007/s00466-005-0003-z
  21. Liu, X., Liu, G.R., Tai, K. and Lam, K.Y. (2005), "Radial point interpolation collocation method for the solution of partial differential equations", Comput. Math. Appl., 50, 1425-1442. https://doi.org/10.1016/j.camwa.2005.02.019
  22. Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fl., 20, 1081-1106. https://doi.org/10.1002/fld.1650200824
  23. Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astron. J., 82(12), 1013-1024. https://doi.org/10.1086/112164
  24. Moran, B. and Shih, C.F. (1978), "Crack tip and associated domain integrals from momentum and energy balance", Eng. Fract. Mech., 27, 615-641.
  25. Nayroles, B., Touzot, G. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 307-318. https://doi.org/10.1007/BF00364252
  26. Onate, E., Idelsohn, S., Zienkiewicz, O.C. and Taylor, R.L. (1996), "A finite point method in computational mechanics: applications to convective transport and fluid flow", Int. J. Numer. Meth. Eng., 139, 3839-3866.
  27. Perrone, N. and Kao, R. (1975), "A general finite difference method for arbitrary meshes", Comput. Struct., 5, 45-58. https://doi.org/10.1016/0045-7949(75)90018-8
  28. Sadeghirad, A. and Mahmoudzadeh Kani, I. (2009) "Modified equilibrium on line method for imposition of Neumann boundary conditions in meshless collocation methods", Commun. Numer. Meth. En., 25, 147-171. https://doi.org/10.1002/cnm.1114
  29. Sadeghirad, A., Mahmoudzadeh Kani, I., Noorzad, A., Rahimian, M. and Vaziri Astaneh, A. (2010), "Elastic fracture analyses using an enriched collocation method", Arab. J. Sci. Eng., 35, 165-181.
  30. Sadeghirad, A., Mahmoudzadeh Kani, I., Rahimian, M. and Vaziri Astaneh, A. (2009), "A numerical approach based on the meshless collocation method in elastodynamics", Acta Mech. Sinica., 25, 857-870. https://doi.org/10.1007/s10409-009-0236-8
  31. Sadeghirad, A. and Mohammadi, S. (2007), "Equilibrium on line method (ELM) for imposition of Neumann boundary conditions in the finite point method (FPM)", Int. J. Numer. Meth. Eng., 69, 60-86. https://doi.org/10.1002/nme.1755
  32. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Edition, McGraw Hill, New York.
  33. Wang, J.G., Liu, G.R. and Wu, Y.G. (2001), "A point interpolation method for simulating dissipation process of consolidation", Cornput. Method. Appl. Mech. Eng., 190, 5907-5922. https://doi.org/10.1016/S0045-7825(01)00204-3
  34. Zhang, X., Liu, X.H., Song, K.Z. and Lu, M.W. (2001), "Least-squares collocation meshless method", Int. J. Numer. Meth. Eng., 51(9), 1089-1100. https://doi.org/10.1002/nme.200
  35. Zhu, T., Zhang, J.D. and Atluri, S.N. (1998), "Local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach", Comput. Mech., 21(3), 223-235. https://doi.org/10.1007/s004660050297

Cited by

  1. A simple meshless method for challenging engineering problems vol.32, pp.6, 2015, https://doi.org/10.1108/EC-06-2014-0131
  2. A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates vol.39, pp.4, 2010, https://doi.org/10.12989/sem.2011.39.4.579