References
- Attard, M.M. (1986), "Nonlinear theory of non-uniform torsion of thin-walled open beams", Thin Wall. Struct., 4, 101-134. https://doi.org/10.1016/0263-8231(86)90019-4
- Barsoum, R.S. and Gallagher, R.H. (1970), "Finite element analysis of torsional and torsional-flexural stability problems", Int. J. Numer. Meth. Eng., 2, 335-352. https://doi.org/10.1002/nme.1620020304
- Bazant, Z.P. and Cedolin, L. (1991), Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, Oxford University Press.
- Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24(2), 247-268. https://doi.org/10.12989/sem.2006.24.2.247
- Cowper, G.R. (1966), "The shear coefficient in timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340. https://doi.org/10.1115/1.3625046
- Euler, L. (1759), Sur la force des colonnes, Memoires Academic Royale des Sciences et Belle Lettres.
- Gadalla, M.A. and Abdalla, J.A. (2006), "Modeling and prediction of buckling behavior of compression members with variability in material and/or section properties", Struct. Eng. Mech., 22(5), 631-645. https://doi.org/10.12989/sem.2006.22.5.631
- Hutchinson, J.R. (2001), "Shear coefficients for timoshenko beam theory", J. Appl. Mech., 68, 87-92. https://doi.org/10.1115/1.1349417
- Ioannidis, G.I. and Kounadis, A.N. (1999), "Flexural-torsional postbuckling analysis of centrally compressed bars with open thin-walled cross-section", Eng. Struct., 21, 55-61. https://doi.org/10.1016/S0141-0296(97)00140-5
- Katsikadelis, J.T. (2002), "The analog equation method, a boundary-only integral equation method for nonlinear static and dynamic problems in general bodies", Theor. Appl. Mech., 27, 13-38.
- Knothe, K. and Wessels, H. (1992), Finite Elemente, Springer Verlag, 2. Auflage, Berlin-New York.
- Kounadis, A.N. (1998), "Postbuckling analysis of bars with thin-walled cross sections under simultaneous bending and torsion due to central thrust", J. Construct. Steel Res., 45, 17-37. https://doi.org/10.1016/S0143-974X(97)00061-8
- Li, Q.S. (2003), "Effect of shear deformation on the critical buckling of multi-step bars", Struct. Eng. Mech., 15(1), 71-81. https://doi.org/10.12989/sem.2003.15.1.071
- Mohri, F., Azrar, L. and Potier-Ferry, M. (2001), "Flexural-torsional post-buckling analysis of thin-walled elements with open sections", Thin Wall.Struct., 39, 907-938. https://doi.org/10.1016/S0263-8231(01)00038-6
- MSC/NASTRAN for Windows (1999), Finite Element Modeling and Postprocessing System, Help System Index,Version 4.0, USA.
- Rajasekaran, S. (2008), "Buckling of fully embedded non-prismatic columns using ifferential quadrature and differential transformation methods", Struct. Eng. Mech., 28(2), 221-238. https://doi.org/10.12989/sem.2008.28.2.221
- Sapountzakis, E.J. and Katsikadelis, J.T. (2000), "Elastic deformation of ribbed plate systems under static, transverse and inplane loading", Comput. Struct., 74, 571-581. https://doi.org/10.1016/S0045-7949(99)00066-8
- Sapountzakis, E.J. and Mokos, V.G. (2001), "Nonuniform torsion of composite bars by boundary element method", J. Eng. Mech-ASCE, 127(9), 945-953. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:9(945)
- Sapountzakis, E.J. and Mokos, V.G. (2003), "Warping shear stresses in nonuniform torsion by BEM", Comput. Mech., 30, 131-142. https://doi.org/10.1007/s00466-002-0373-4
- Sapountzakis, E.J. and Mokos, V.G. (2004), "Nonuniform torsion of bars of variable cross section", Comput. Struct., 82, 703-715. https://doi.org/10.1016/j.compstruc.2004.02.022
- Sapountzakis, E.J. and Mokos, V.G. (2005), "A BEM solution to transverse shear loading of beams", Computat. Mech., 36, 384-397. https://doi.org/10.1007/s00466-005-0677-2
- Schramm, U., Kitis, L., Kang, W. and Pilkey, W.D. (1994), "On the shear deformation coefficient in beam theory", Finite Elem. Anal. Des., 16, 141-162. https://doi.org/10.1016/0168-874X(94)00008-5
- Schramm, U., Rubenchik, V. and Pilkey, W.D. (1997), "Beam stiffness matrix based on the elasticity equations", Int. J. Numer. Meth. Eng., 40, 211-232. https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2<211::AID-NME58>3.0.CO;2-P
- Simitses, G.J. and Hodges, D.H. (2006), Fundamentals of Structural Stability, Elsevier, Boston.
- Stephen, N.G. (1980), "Timoshenko's shear coefficient from a beam subjected to gravity loading", J. Appl. Mech., 47, 121-127. https://doi.org/10.1115/1.3153589
- Szymczak, C. (1980), "Buckling and initial post-buckling behavior of thin-walled I columns", Comput. Struct., 11(6), 481-487. https://doi.org/10.1016/0045-7949(80)90055-3
- Timoshenko, S.P. (1921). "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41, 744-746. https://doi.org/10.1080/14786442108636264
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, Tokyo.
- Timoshenko, S.P. and Goodier, J.N. (1984), Theory of Elasticity, 3rd edition, McGraw-Hill, New York.
- Trahair, N.S. (1993), Flexural-torsional Buckling of Structures, Chapman and Hall, London.
- Vlasov, V.Z. (1961), Thin-walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem.
- Yu, W., Hodges, D.H., Volovoi, V.V. and Fuchs, E.D. (2005), "A generalized vlasov theory for composite beams", Thin Wall. Struct., 43(9), 1493-1511. https://doi.org/10.1016/j.tws.2005.02.003
Cited by
- Warping stresses of a rectangular single leaf flexure under torsion vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.527
- Torsional analysis of a single-bent leaf flexure vol.54, pp.1, 2015, https://doi.org/10.12989/sem.2015.54.1.189
- A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams vol.55, pp.3, 2015, https://doi.org/10.12989/sem.2015.55.3.655