DOI QR코드

DOI QR Code

Accuracy of structural computation on simplified shape

  • Marin, P. (3SR Laboratory, National Polytechnic Institute of Grenoble)
  • Received : 2007.07.25
  • Accepted : 2009.10.12
  • Published : 2010.05.30

Abstract

This paper focuses on a number of criteria that enable controlling the influence of geometric simplification on the quality of finite element (FE) computations. To perform the mechanical simulation of a component, the corresponding geometric model typically needs to be simplified in accordance with hypotheses adopted regarding the component's mechanical behaviour. The method presented herein serves to compute an a posteriori indicator for the purpose of estimating the significance of each feature removal. This method can be used as part of an adaptive process of geometric simplification. If a shape detail removed during the shape simplification process proves to be influential on mechanical behaviour, the particular detail can then be reinserted into the simplified model, thus making it possible to readapt the initial simulation model. The fields of application for such a method are: static problems involving linear elastic behaviour, and linear thermal problems with stationary conduction.

Keywords

References

  1. Babuska, I. and Rheinbold, W.C. (1978), ''A posteriori error estimates for the finite element method'', Int. J. Numer. Meth. Eng., 12, 1597-1615. https://doi.org/10.1002/nme.1620121010
  2. Cohen, J., Manocha, D., Varshney, A. and Turk, G. (1995), ''Efficient model simplification with global error bounds'', Proceedings of the 5th MSI Worshop on Computational Geometry, Stony Brook, October.
  3. Dabke, P., Prabhakar, V. and Sheppard, S. (1994), ''Using features to support finite element idealisation'', Proceedings of the International Conference ASME, Minneapolis.
  4. Ferrandes, R., Leon, J.C., Marin, P. and Giannini, F. (2006), "Semantic operators for handling shape sub-domains in the FE model preparation'', Proceedings of ASME DETC International Conference, Las Vegas.
  5. Ferrandes, R., Marin, P., Leon, J.C. and Giannini, F. (2009), "A posteriori evaluation of simplification details for finite element model'', Comput. Struct., 87, 73-80. https://doi.org/10.1016/j.compstruc.2008.08.009
  6. Fine, L. and Leon, J.C. (2005), "A new approach to the Preparation of models for F.E. analyses", Int. J. Comput. Appl., 23(2/3/4), 166-184. https://doi.org/10.1504/IJCAT.2005.006485
  7. Fine, L., Remondini, L. and Leon, J.C. (2000), ''Automated generation of FEA models through idealization operators'', Int. Numer. Meth. Eng., 49(1-2), 83-108. https://doi.org/10.1002/1097-0207(20000910/20)49:1/2<83::AID-NME924>3.0.CO;2-N
  8. Foucault, G., Marin, P. and Leon, J.C. (2004), ''Mechanical criteria for the preparation of finite element model'', Proceeding of the 13th International Meshing Roundtable, Williamsburg, USA.
  9. Francois, V. and Cuilliere, J.C. (2000), ''Automatic remeshing applied to model modification'', Comput. Aided Design, 32(7), 377-388. https://doi.org/10.1016/S0010-4485(00)00019-1
  10. Gopalakrishnan, S.H. and Suresh, K. (2007), "A formal theory for estimating defeaturing-induced engineering analysis errors", Comput. Aided Design, 39(1), 60-68. https://doi.org/10.1016/j.cad.2006.09.006
  11. Hamri, O., Leon, J.C., Giannini, F., Falcidieno, B., Poulat, A. and Fine, L. (2006), "Interfacing product views through a mixed shape representation. Part 1: Data structures and operators", Proceedings of Virtual Concept 2006, Playa Del Carmen, Mexico.
  12. Joshi, N. and Dutta, D. (2003), "Feature simplification techniques for Freeform surface models", J. Comput. Inf. Sci. Eng., 3(3), 177-186. https://doi.org/10.1115/1.1603307
  13. Kim, C., Mijar, A. and Arosa, J. (2001), ''Development of simplified models for design and optimization of automotive structures for crashworthiness'', Struct. Multidiscip. O., 22(4), 307-321. https://doi.org/10.1007/PL00013285
  14. Ladeveze, P. and Leguillon, D. (1983), "Error estimate procedure in finite element method and application", SIAM J. Numer. Anal., 20(3), 485-509. https://doi.org/10.1137/0720033
  15. Ladeveze, P., Marin, P., Pelle, J.P. and Gastine, J.L. (1992), "Accuracy and optimal meshes in finite-element computation for nearly incompressible materials", Comput. Method. Appl. M., 94(3), 303-315. https://doi.org/10.1016/0045-7825(92)90057-Q
  16. Ladeveze, P., Pelle, J.P. and Rougeot, P. (1991), "Error estimation and mesh optimization for classical finite elements", Eng. Computation, 8, 69-80. https://doi.org/10.1108/eb023827
  17. Lee, K., Chong, T. and Park, G.J. (2003), ''Development of a methodology for a simplified finite element model and optimum design'', J. Comput. Struct., 81, 1449-1460. https://doi.org/10.1016/S0045-7949(03)00084-1
  18. Livne, E. (1994), ''Equivalent plate structural modelling for wing shape optimization including transverse shear'', AIAA J., 32(6), 1278-1288. https://doi.org/10.2514/3.12130
  19. Leon, J.C., Marin, P. and Foucault, G. (2004), ''Operators and criteria for integrating FEA in the design workflow: Toward a multi-resolution mechanical model Mechanical criteria for the preparation of finite element model'', Proceeding of the 13th European Conference on Mathematics for Industry (ECMI2004), Eindhoven, The Netherlands.
  20. Machnik, A., Marin, P. and Souza, E. (1998), ''Simplification of FEM models within Integrated Environment. Application to automobile crashworthness analysis'', Proceeding of the 2nd International Conference on Integrated Design and Manufacturing (IDMME'98), Compiègne, France.
  21. Mobley, A.V., Caroll, M.P. and Canann, S.A. (1998), ''An object oriented approach to geometry defeaturing for Finite Element Meshing'', Proceeding of the 7th International Meshing Roundtable, Dearborn, USA.
  22. Schroeder, W.J., Zarge, J.A. and Lorensen, W.E. (1992), ''Decimation of triangle meshes'', Proceedings of SIGGRAPH92 Conference, Computer Graphics, July.
  23. Szabo, B.A. (1996), ''The problem of model selection in numerical simulation", Advances in Computational Methods For Simulation (Ed. Topping, B.H.V.), Civil-Comp Press, Edinburgh.
  24. Veron, P. and Leon, J.C. (1997), ''Static polyhedron simplification using error measurements'', Comput. Aided Design, 29(4), 287-298. https://doi.org/10.1016/S0010-4485(96)00057-7
  25. Veron, P. and Leon, J.C. (1998), ''Shape preserving polyhedral simplification with bounded error'', Comput. Graphic., 22(5), 565-585. https://doi.org/10.1016/S0097-8493(98)00063-6
  26. Yoshimura, M. (1998), ''Detailed machine structure shapes generated from simplified models'', Proceeding of the IUTAM Symposium on Structural Optimization, 387-394.
  27. Zhienkiewicz, O.C. and Zhu, J.Z. (1987), ''A simple error indicator and adaptive procedure for practical engineering analysis'', Int. J. Numer. Meth. Eng., 24, 337-357. https://doi.org/10.1002/nme.1620240206
  28. Zhu, H. and Menq, C.H. (2002), "B-Rep model simplification by automatic fillet/round suppressing for efficient automatic feature recognition", Comput. Aided Design, 34(2), 109-123. https://doi.org/10.1016/S0010-4485(01)00056-2