DOI QR코드

DOI QR Code

On the accuracy of estimation of rigid body inertia properties from modal testing results

  • Ashory, M.R. (Department of Mechanical Engineering, Semnan University) ;
  • Malekjafarian, A. (Department of Mechanical Engineering, Semnan University) ;
  • Harandi, P. (Department of Mechanical Engineering, Semnan University)
  • Received : 2009.04.22
  • Accepted : 2010.01.18
  • Published : 2010.05.10

Abstract

The rigid body inertia properties of a structure including the mass, the center of gravity location, the mass moments and principal axes of inertia are required for structural dynamic analysis, modeling of mechanical systems, design of mechanisms and optimization. The analytical approaches such as solid or finite element modeling can not be used efficiently for estimating the rigid body inertia properties of complex structures. Several experimental approaches have been developed to determine the rigid body inertia properties of a structure via Frequency Response Functions (FRFs). In the present work two experimental methods are used to estimate the rigid body inertia properties of a frame. The first approach consists of using the amount of mass as input to estimate the other inertia properties of frame. In the second approach, the property of orthogonality of modes is used to derive the inertia properties of a frame. The accuracy of the estimated parameters is evaluated through the comparison of the experimental results with those of the theoretical Solid Work model of frame. Moreover, a thorough discussion about the effect of accuracy of measured FRFs on the estimation of inertia properties is presented.

Keywords

References

  1. Almeida, R.A.B., Urgueira, A.P.V. and Maia, N.M.M. (2007), "Identification of rigid body properties from vibration measurements", J. Sound Vib., 299, 884-899. https://doi.org/10.1016/j.jsv.2006.07.043
  2. Almeida, R.A.B., Urgueira, A.P.V. and Maia, N.M.M. (2008), "Evaluation of the three different methods used in the identification of rigid body properties", Shock Vib., 467-479.
  3. Atchonouglo, E., Vallee, C., Monnet, T. and Fortune, D. (2008), "Identification of the ten inertia parameters of a rigid body", J. Appl. Math. Mech., 22-25.
  4. Bretl, J. and Conti, P. (1987), "Rigid body mass properties from test data", Proceedings of the 5th International Modal Analysis Conference (IMAC), London, England.
  5. Conti, P. and Bretl, J. (1989), "Mount stiffness and inertia properties from modal test data", J. Vib. Acoust. Stress Reliab. Des., 111, 134-138. https://doi.org/10.1115/1.3269833
  6. Ewins, D.J. (1995), Modal Testing Theory and Practice, Research Studies Press Ltd., Taunton Somerset, England.
  7. Gatzwiller, K., Witter, M. and Brown, L. (2000), "New method for measuring inertial properties", Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas.
  8. Hahn, H. (1994), "Inertia parameter Identification of rigid bodies using multi- axis test facility", Proceedings of the 3rd IEEE Conference on Control Applications, Glasgow.
  9. Holzweissig, F. and Dresig, H. (1994), "Lehrbuch der maschinedyrnamik; Grundlagenund proxisorientierte beispiele", mit 40 Aufgaben mit Losungen und Tabellen, 4, Neubeard Auf1, Fachbuchverlags, leipzig, koln.
  10. Hou, Z.C., Lu, Y.N., Lao, Y.X. and Liu, D. (2009), "A new trifilar pendulum approach to identify all inertia parameters of a rigid body or assembly rigid body", Mech. Mach. Theory, 44(6), 1270-1280. https://doi.org/10.1016/j.mechmachtheory.2008.07.004
  11. Lee, H., Lee, Y. and Park, Y. (1999), "Response and excitation points selection for accurate rigid body inertia properties identification", Mech. Syst. Signal Pr., 13(4), 571-592. https://doi.org/10.1006/mssp.1998.0190
  12. Link, M. (1985), "Application of method for identifying incomplete system matrices from vibration test data", Zeitschrift fuer Flugwissenschaften und Weltraumforschung, 9, 110-114.
  13. Link, M. (1985), "Theory of a method for Identifying, Incomplete system matrices from vibration test data", Zeitschrift fuer Flugwissenschaften und Weltraumforschung, 9, 78-82.
  14. Link, M. (1996), "Identification of rigid body properties using base excitation and measured interface forces", Proceedings of the 1996 ESA Conference on Spacecraft Structures, Materials and Mechanical Testing, Noordwijk, The Netherlands.
  15. Mangus, J.A., Passerello, C. and Vankarsen, C. (1992), "Direct estimation of rigid body properties from frequency response functions", Proceedings of the 10th International Modal Analysis Conference (IMAC), San Diego, CA.
  16. Modent (1988-2000), "Integrated software for structural dynamics", ICATS, Imperial College of Science, Technology and Medicine, University of London, U.K.
  17. Nakamura, M. (1995), "Identification of inertial properties for resiliently supported mechanical system", Proceedings of the Design Engineering Technical Conference, Boston.
  18. Okuma, M., Heylen, W. and Matsuoka, M., (2001), "Identification and prediction of frame structure dynamics by spatial matrix identification method", J. Vib. Acoust., 123.
  19. Okuma, M., Heylen, W. and Sas, P. (2000), "Identification of rigid body properties of 3-D frame structure by MCK Identification method", Proceedings of the 25th International Seminar on Modal Analysis (ISMA), Noise and Vibration Engineering, Leuven, Belgium.
  20. Pandit, S. and Hu, Z. (1994), "Determination of rigid body characteristics from time domain Modal test data", J. Sound Vib., 5, 52-61.
  21. Pandit, S.M., Hu, Z. and Yao, Y. (1992), "Experimental technique for accurate determination of rigid body characteristics", Proceedings of The 10th International Modal Analysis Conference (IMAC), San Diego, Califonia.
  22. Schedlinski, C. and Link, M. (2001), "A survey of current inertia parameter identification methods", Mech. Syst. Signal Pr., 15(1), 189-211. https://doi.org/10.1006/mssp.2000.1345
  23. Toivola, J. and Nuutila, O. (1993), "Comparison of three methods for determining rigid body inertia properties from frequency response functions", Proceedings of the 10th International Modal Analysis Conference (IMAC), Kissimmee, Fl.
  24. Wei, Y.S. and Reis, J. (1989), "Experimental determination of rigid body inertia properties", Proceedings of The 10th International Modal Analysis Conference (IMAC), Orlando, Fl.
  25. Witter, M.C., Brown, D.L. and Blough, J.R. (2000), "Measuring the six dof driving point impedance function and application to RB inertia property estimation", Mech. Syst. Signal Pr., 14(1), 111-124. https://doi.org/10.1006/mssp.1999.1263

Cited by

  1. Identification of inertia properties from the results of output-only modal analysis vol.83, pp.6, 2013, https://doi.org/10.1007/s00419-012-0727-0
  2. Rigid body stiffness matrix for identification of inertia properties from output-only data vol.59, 2016, https://doi.org/10.1016/j.euromechsol.2016.03.009
  3. Identification of Engine Inertia Parameters and System Dynamic Stiffness via In Situ Method vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/6439762
  4. Error analysis of inertia parameters measurement for irregular-shaped rigid bodies using suspended trifilar pendulum vol.174, pp.None, 2010, https://doi.org/10.1016/j.measurement.2020.108956