References
- Abu-Hilal, M. (2006), "Dynamic response of a double Euler-Bernoulli beam due to a moving constant load", J. Sound Vib., 297, 477-491. https://doi.org/10.1016/j.jsv.2006.03.050
- Arikoglu, A. and Ozkol, I. (2005), "Solution of boundary value problems for integro-differential equations by using differential transform method", Appl. Math. Comput., 168, 1145-1158. https://doi.org/10.1016/j.amc.2004.10.009
- Avramidis, I.E. and Morfidis, K. (2006), "Bending of beams on three-parameter elastic foundation", Int. J. Solids Struct., 43, 357-375. https://doi.org/10.1016/j.ijsolstr.2005.03.033
- Ayaz, F. (2003), "On the two-dimensional differential transform method", Appl. Math. Comput., 143, 361-374. https://doi.org/10.1016/S0096-3003(02)00368-5
- Ayaz, F. (2004), "Solutions of the system of differential equations by differential transform method", Appl. Math. Comput., 147, 547-567. https://doi.org/10.1016/S0096-3003(02)00794-4
- Chen, C.K. and Ho, S.H. (1999), "Solving partial differential equations by two-dimensional differential transform method", Appl. Math. Comput., 106, 171-179. https://doi.org/10.1016/S0096-3003(98)10115-7
- Catal, S. (2006), "Analysis of free vibration of beam on elastic soil using differential transform method", Struct. Eng. Mech., 24(1), 51-62. https://doi.org/10.12989/sem.2006.24.1.051
- Erol, H. and Gurgoze, M. (2004), "Longitudinal vibrations of a double-rod system coupled by springs and dampers", J. Sound Vib., 276, 419-430. https://doi.org/10.1016/j.jsv.2003.10.043
- Hamada, T.R., Nakayama, H. and Hayashi, K. (1983), "Free and forced vibrations of elastically connected double-beam systems", Trans. Japan Soc.Mech. Eng., 49, 289-295. https://doi.org/10.1299/kikaic.49.289
- Kaya, M.O. (2006), "Free vibration analysis of rotating Timoshenko beam by differential transform method", Aircr. Eng. Aerosp. Tec., 78(3), 194-203. https://doi.org/10.1108/17488840610663657
- Kessel, P.G. (1966), "Resonances excited in an elastically connected double-beam system by a cyclic moving load", J. Acoust. Soc. Am. 40, 684-687. https://doi.org/10.1121/1.1910136
- Kessel, P.G. and Raske, T.F. (1971), "Damped response of an elastically connected double-beam system due to a cyclic moving load", J. Acoust. Soc. Am., 49, 371-373. https://doi.org/10.1121/1.1912341
- Kukla, S. (1994), "Free vibration of the system of two beams connected by many translational springs", J. Sound Vib., 172, 130-135. https://doi.org/10.1006/jsvi.1994.1163
- Kukla, S. and Skalmierski, B. (1994), "Free vibration of a system composed of two beams separated by an elastic layer", J. Theor. Appl. Mech., 32, 581-590.
- Oniszczuk, Z. (1999), "Transverse vibrations of elastically connected rectangular double-membrane compound system", J. Sound Vib., 221, 235-250. https://doi.org/10.1006/jsvi.1998.1998
- Oniszczuk, Z. (2000a), "Free transverse vibrations of elastically connected simply supported double-beam complex system", J. Sound Vib., 232(2), 387-403. https://doi.org/10.1006/jsvi.1999.2744
- Oniszczuk, Z. (2000b), "Forced transverse vibrations of an elastically connected double-beam complex system", XVII Ogolnopolska Konferencza Naukowo-Dydaktyczna Teorii Maszyn 1 Mechanizmow, Warszawa- Jachranka, 6-8, Wrzesnia.
- Oniszczuk, Z. (2002), "Free transverse vibrations of an elastically connected complex beam-string system", J. Sound Vib., 254, 703-715. https://doi.org/10.1006/jsvi.2001.4117
- Oniszczuk, Z. (2003), "Forced transverse vibrations of an elastically connected complex simply supported double-beam system", J. Sound Vib., 264, 273-286. https://doi.org/10.1016/S0022-460X(02)01166-5
- Ozdemir, O. and Kaya, M.O. (2006a), "Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289, 413-420. https://doi.org/10.1016/j.jsv.2005.01.055
- Ozdemir, O. and Kaya, M.O. (2006b), "Flapwise bending vibration analysis of double tapered rotating Euler- Bernoulli beam by using the differential transform method", Meccanica, 41(6), 661-670. https://doi.org/10.1007/s11012-006-9012-z
- Saito, H. and Chonan, S. (1969), "Vibrations of elastically connected double-beam systems", Technology Reports, Tohoku Univ., 34, 141-159.
- Seelig, J.M. and Hoppmann, W.H. (1964a), "Normal mode vibrations of systems of elastically connected parallel bars", J. Acoust. Soc. Am., 36, 93-99. https://doi.org/10.1121/1.1918919
- Seelig, J.M. and Hoppmann, W.H. (1964b), "Impact on an elastically connected double-beam system", T. Am. Soc. Mech. Eng., J. Appl. Mech., 31, 621-626. https://doi.org/10.1115/1.3629723
- Vu, H.V., Ordonez, A.M. and Karnopp, B.H. (2000), "Vibration of a double-beam system", J. Sound Vib., 229(4), 807-822. https://doi.org/10.1006/jsvi.1999.2528
- Winkler, E. (1867), "Die Lehre von der Elastizität und Festigkeit", Prague.
- Zhou, J.K. (1986), Differential Transformation and its Application for Electrical Circuits, Huazhong University Press, Wuhan, China.
Cited by
- Dynamic stiffness matrix of an axially loaded slenderdouble-beam element vol.35, pp.6, 2010, https://doi.org/10.12989/sem.2010.35.6.717
- Free vibration analysis of partially connected parallel beams with elastically restrained ends vol.230, pp.16, 2016, https://doi.org/10.1177/0954406215607902
- Free vibration analysis of two parallel beams connected together through variable stiffness elastic layer with elastically restrained ends vol.20, pp.3, 2017, https://doi.org/10.1177/1369433216649395
- An exact dynamic stiffness matrix for axially loaded double-beam systems vol.39, pp.3, 2014, https://doi.org/10.1007/s12046-013-0214-5
- Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium vol.40, pp.4, 2010, https://doi.org/10.12989/sem.2011.40.4.583