DOI QR코드

DOI QR Code

Nonlinear free vibration of heated corrugated annular plates with a centric rigid mass

  • Wang, Yong-Gang (Department of Applied Mechanics, China Agricultural University) ;
  • Li, Dan (Department of Applied Mechanics, China Agricultural University) ;
  • Feng, Ze-Jun (Department of Applied Mechanics, China Agricultural University)
  • Received : 2009.02.11
  • Accepted : 2009.12.01
  • Published : 2010.03.10

Abstract

A computational analysis of the nonlinear free vibration of corrugated annular plates with shallow sinusoidal corrugations under uniformly static ambient temperature is examined. The governing equations based on Hamilton's principle and nonlinear bending theory of thin shallow shell are established for a corrugated plate with a concentric rigid mass at the center and rotational springs at the outer edges. A simple harmonic function in time is assumed and the time variable is eliminated from partial differential governing equations using the Kantorovich averaging procedure. The resulting ordinary equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved numerically by shooting method, and the temperature-dependent characteristic relations of frequency vs. amplitude for nonlinear vibration of heated corrugated annular plates are obtained. Several numerical results are presented in both tabular and graphical forms, which demonstrate the accuracy of present method and illustrate the amplitude frequency dependence for the plate under such parameters as ambient temperature, plate geometry, rigid mass and elastic constrain.

Keywords

References

  1. Allahverdizadeh, A., Naei, M.H. and Bahrami, M.N. (2008), "Nonlinear free and forced vibration analysis of thin circular functionally graded plates", J. Sound Vib., 310, 966-984. https://doi.org/10.1016/j.jsv.2007.08.011
  2. Axelrad, E.L. (1964), "Large deflection of corrugated membrane as a non-shallow shell", Bull. Acad. Sci. USSR, Mekhanika Mashinostroenie, 1, 46-53 (in Russian).
  3. Bihari, I. and Elbert, A. (1978), "Deformation of circular corrugated plates and shells", Periodica Polytech. Mech. Eng., 22(2), 123-143.
  4. Chen, S.L. (1980), "Elastic behavior of uniformly loaded circular corrugated plate with sine-shaped shallow waves in large deflection", Appl. Math. Mech., 1(2), 279-291. https://doi.org/10.1007/BF01876750
  5. Chia, C.Y. (1980), Nonlinear Analysis of Plates, McGraw-Hill, New York, USA.
  6. Dumir, P.C. (1986), "Nonlinear axisymmetric response of orthotropic thin truncated conical and spherical caps", Acta Mech., 60(2), 121-132. https://doi.org/10.1007/BF01302946
  7. Dumir, P.C., Kumarand, C.R. and Gandhi, M.L. (1985), "Non-linear axisymmetric vibration of orthoropic thin circular plates on elastic foundations", J. Sound Vib., 103, 273-285. https://doi.org/10.1016/0022-460X(85)90238-X
  8. Dumir, P.C., Nathand, Y. and Gandhi, M.L. (1984), "Non-linear axisymmetric transient analysis of orthotropic thin annular plates with a rigid central mass", J. Sound Vib., 97, 387-397. https://doi.org/10.1016/0022-460X(84)90269-4
  9. Gupta, U.S. and Ansari, A.H. (1998), "Asymmetric vibrations and elastic stability of polar orthotropic circular plates of linearly varying profile", J. Sound Vib., 215, 231-250. https://doi.org/10.1006/jsvi.1998.1589
  10. Gupta, U.S. and Ansari, A.H. (2002), "Effect of elastic foundation on asymmetric vibration of polar orthotropic linearly tapered circular plates", J. Sound Vib., 254, 411-426. https://doi.org/10.1006/jsvi.2000.3518
  11. Hamada, M., Seguchi, Y. and Ito, S. (1968), "Numerical method for nonlinear axisymmetric bending of arbitrary shells of revolution and large deflection analyses of corrugated diaphragm and bellows", Bull. JSME, 11(43), 24-33. https://doi.org/10.1299/jsme1958.11.24
  12. Haringx, J.A. (1956), "Nonlinearity of corrugated diaphragms", Appl. Sci. Res. Ser. A., 16, 45-52.
  13. Haterbouch, M. and Benamar, R. (2003), "The effects of large vibration amplitudes on the axisymmetric mode shapes and natural frequencies of clamped thin isotropic circular plates. Part I: Iterative and explicit analytical solution for non-linear transverse vibrations", J. Sound Vib., 265, 123-154. https://doi.org/10.1016/S0022-460X(02)01443-8
  14. Haterbouch, M. and Benamar, R. (2004), "The effects of large vibration amplitudes on the axisymmetric mode shapes and natural frequencies of clamped thin isotropic circular plates. Part II: Iterative and explicit analytical solution for non-linear coupled transverse and in-plane vibrations", J. Sound Vib., 277, 1-30. https://doi.org/10.1016/j.jsv.2003.08.039
  15. Haterbouch, M. and Benamar, R. (2005), "Geometrically nonlinear free vibrations of simply supported isotropic thin circular plates", J. Sound Vib., 280, 903-924. https://doi.org/10.1016/j.jsv.2003.12.051
  16. Huang, C.L. and Aurora, P.R. (1979), "Non-linear oscillations of elastic orthotropic annular plates of variable thickness", J. Sound Vib., 62, 443-453. https://doi.org/10.1016/0022-460X(79)90636-9
  17. Huang, C.L.D. and Al-Khattat, I.M. (1977), "Finite amplitude vibrations of a circular plate", Int. J. Nonlin. Mech., 12, 297-306. https://doi.org/10.1016/0020-7462(77)90005-1
  18. Huang, C.L.D. and Huang, S.T. (1989), "Finite element analysis of non-linear vibration of a circular plate with a concentric rigid mass", J. Sound Vib., 131, 215-227. https://doi.org/10.1016/0022-460X(89)90487-2
  19. Huang, C.L.D. and Walker, H.S. (1988), "Non-linear vibration of hinged circular plate with a concentric rigid mass", J. Sound Vib., 126, 9-17. https://doi.org/10.1016/0022-460X(88)90394-X
  20. Huang, S. (1998), "Non-linear vibration of a hinged orthotropic circular plate with a concentric rigid mass", J. Sound Vib., 214, 873-883. https://doi.org/10.1006/jsvi.1998.1588
  21. Li, D. and Liu, R.H. (1990), "Application of the modified iteration method to nonlinear vibration of corrugated circular plates", Appl. Math. Mech., 11(1), 13-22. https://doi.org/10.1007/BF02014567
  22. Li, S.R. and Zhou, Y.H. (2001), "Shooting method for non-linear vibration and buckling of heated orthotropic plates", J. Sound Vib., 248, 379-386. https://doi.org/10.1006/jsvi.2001.3665
  23. Li, S.R. and Zhou, Y.H. (2002), "Nonlinear vibration and thermal buckling of an orthotropic annular plate with a centric rigid mass", J. Sound Vib., 251, 141-152. https://doi.org/10.1006/jsvi.2001.3987
  24. Li, S.R. and Zhou, Y.H. (2003), "Nonlinear vibration of heated orthotropic annular plates with immovably hinged edges", J. Therm. Stresses, 26, 691-700. https://doi.org/10.1080/713855995
  25. Liew, K.M., Lim, C.W. and Kitipornchai, S. (1997), "Vibration of shallow shells: a review with bibliography", Appl. Mech. Rev., 50, 431-444. https://doi.org/10.1115/1.3101731
  26. Liew, K.M., Peng, L.X. and Kitipornchai, S. (2007), "Nonlinear analysis of corrugated plates using a FSDT and a meshfree method", Comput. Meth. Appl. Mech. Eng., 196, 2358-2376. https://doi.org/10.1016/j.cma.2006.11.018
  27. Liu, R.H. and Li, D. (1989), "On the nonlinear bending and vibration of corrugated circular plates", Int. J. Nonlin. Mech., 24(3), 165-176. https://doi.org/10.1016/0020-7462(89)90035-8
  28. Liu, R.H. and Yuan, H. (1997), "Nonlinear bending of corrugated annular plate with large boundary corrugation", Appl. Math. Mech., 2(3), 353-367.
  29. Liu, R.H. and Yuan, H. (2003), "Nonlinear bending of corrugated diaphragm with large boundary corrugation under compound load", Appl. Math. Mech., 24(4), 414-420. https://doi.org/10.1007/BF02439620
  30. Panov, D.Y. (1941), "On large deflection of circular membrane with weak corrugations", Prikladnaya Matematika I Mekhanika, 5(2), 303-318 (in Russian)
  31. Peng, L.X., Liew, K.M. and Kitipornchai, S. (2007), "Analysis of stiffened corrugated plates based on the FSDT via the mesh-free method", Int. J. Mech. Sci., 49, 364-378. https://doi.org/10.1016/j.ijmecsci.2006.08.018
  32. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), Numerical Recipes-the Art of Scientific Computing, Cambridge University Press, New York, USA.
  33. Rao, S., Sheikh, A. and Mukhopadhyay, M. (1993), "Large amplitude finite element flexural vibration of plates/ stiffened plates", J. Acoust. Soc. Am., 93(6), 3250-3257. https://doi.org/10.1121/1.405710
  34. Ribeiro, P. (2004), "Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods", Comput. Struct., 82, 1413-1423. https://doi.org/10.1016/j.compstruc.2004.03.037
  35. Ribeiro, P. (2005), "Nonlinear vibrations of simply-supported plates by the p-version finite element method", Finite Elem. Anal. Des., 82, 911-924.
  36. Ribeiro, P. (2006), "Forced periodic vibrations of laminated composite plates by a p-version, first order shear deformation, finite element", Compos. Sci. Technol., 66, 1844-1856. https://doi.org/10.1016/j.compscitech.2005.10.007
  37. Ribeiro, P. (2008), "Forced large amplitude periodic vibrations of cylindrical shallow shells", Finite Elem. Anal. Des., 44, 657-674. https://doi.org/10.1016/j.finel.2008.03.002
  38. Sathyamoorthy, M. (1987), "Nonlinear vibration analysis of plates: A review and survey of current developments", Appl. Mech. Rev., 40, 1553-1561. https://doi.org/10.1115/1.3149544
  39. Stoykov, S. and Ribeiro, P. (2008), "Periodic geometrically nonlinear free vibrations of circular plates", J. Sound Vib., 315, 536-555. https://doi.org/10.1016/j.jsv.2008.02.001
  40. Wang, X.Z., Wang, L.X. and Hu, X.F. (1987), "Nonlinear vibration of circular corrugated plates", Appl. Math. Mech., 8(3), 241-250. https://doi.org/10.1007/BF02018549
  41. Wang, Y.G. and Dai, S.L. (2003), "Nonlinear vibration of heated bimetallic thin circular plates", J. Tsinghua Univ., 43(2), 218-221 (in Chinese).
  42. Wang, Y.G. and Dai, S.L. (2004), "Thermoelastically coupled axisymmetric nonlinear vibration of shallow spherical and conical shells", Appl. Math. Mech., 24(4), 430-439.
  43. Wang, Y.G., Dai, S.L. and Wang, X.Z. (2002), "Nonlinear vibration of bimetallic circular thin plates under stationary thermal loads", Proceedings of the 4th International Congress on Nonlinear Mechanics, Shanghai, August.
  44. Wang, Y.G., Gao, D. and Wang, X.Z. (2008), "On the nonlinear vibration of heated corrugated circular plates with shallow sinusoidal corrugations", Int. J. Mech. Sci., 50, 1082-1089. https://doi.org/10.1016/j.ijmecsci.2008.02.002
  45. Wang, Y.G., Shi, J.L. and Wang, X.Z. (2009), "Large amplitude vibration of heated corrugated circular plates with shallow sinusoidal corrugations", Appl. Math. Model., 33, 3523-3532. https://doi.org/10.1016/j.apm.2008.11.016
  46. Yamaki, N. (1961), "Influence of large amplitudes on flexural vibrations of elastic plates", Zeitschrift fur Angewandte Mathematik und Mechanik, 41, 501-510. https://doi.org/10.1002/zamm.19610411204
  47. Zheng, X.J. (1994), "Exact solution of large deflection problem for corrugated circular plate under a central concentrated load", J. Lanzhou Univ., 30(3), 31-35 (in Chinese).