References
- Ahn, J.H., Jung, C.Y., Kim, J.H. and Kim, S.H. (2009), "Multi-stepwise thermal prestressing using a cover-plate in steel structures", J. Constr. Steel Res., 65, 1464-1479. https://doi.org/10.1016/j.jcsr.2009.03.004
- Ahn, J.H., Jung, C.Y., Choi, K.T. and Kim, S.H. (2009a), "Plate girder bridge strengthened with multi-stepwise thermal prestressing method", Adv. Struct. Eng. (in review).
- Ahn, J.H., Jung, C.Y., Choi, K.T. and Kim, S.H. (2009b), "Load-carrying capacity evaluation of the composite beam strengthened by multi-stepwise thermal prestressing method using cover-plate", J. Korea Inst. Struct. Maint. Inspection (in press).
- Chen, S. and Gu, P. (2005), "Load carrying capacity of composite beams prestressed with external tendons under positive moment", J. Constr. Steel Res., 61, 515-530. https://doi.org/10.1016/j.jcsr.2004.09.004
- Fisher, J.W. and Wright, W.J. (2001), "High performance steel enhanced the fatigue and fracture resistance of steel bridge structures", Int. J. Steel Struct., 1(1), 1-7. https://doi.org/10.1296/SCS2001.01.01.01
- Korea Highway Bridge Specifications (2005), Korean Ministry of Construction and Transportation.
- Lorenc, W. and Kubica, E. (2006) "Behavior of composite beams prestressed with external tendons: experimental study", J. Constr. Steel Res., 62(12), 1353-1366. https://doi.org/10.1016/j.jcsr.2006.01.007
- Oehlers, D.J., Nguyen, N.T., Ahmed, M. and Bradford, M.A. (1997), "Partial interaction in composite steel and concrete beams with full shear connection", J. Constr. Steel Res., 41(2/3), 235-248. https://doi.org/10.1016/S0143-974X(97)80892-9
- Queiroz, F.D., Vellasco, P.C.G.S. and Nethercot, D.A. (2007), "Finite element modeling of composite beams with full and partial shear connection", J. Const. Steel Res., 63, 505-521. https://doi.org/10.1016/j.jcsr.2006.06.003
- Ranzi, G. and Bradford, M.A. (2009), "Nonlinear analysis of composite beams with partial shear interaction by means of the direct stiffness method", Steel Compos. Struct., 9(2), 131-158. https://doi.org/10.12989/scs.2009.9.2.131
- Sakano, M., Namiki, H., Yajima, S., Koide, Y. and Furuta, H. (2006) "Frangopol DM. Monitoring of steel railway floor beams prestressed by steel plates", J. Bridge Eng., 11(6), 681-687. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:6(681)
Cited by
- Numerical analysis of second-order effects of externally prestressed concrete beams vol.35, pp.5, 2010, https://doi.org/10.12989/sem.2010.35.5.631
- Theoretical and experimental study on flexural behavior of prestressed steel plate girders vol.142, 2018, https://doi.org/10.1016/j.jcsr.2017.12.007
- Selection of the optimal constellation of hybrid systems for pre-stressing vol.106, 2017, https://doi.org/10.1051/matecconf/201710604021
- Design procedure for prestressed concrete beams vol.13, pp.2, 2014, https://doi.org/10.12989/cac.2014.13.2.235
- Development and Evaluation of New Connection Systems for Hybrid Truss Bridges vol.11, pp.2, 2013, https://doi.org/10.3151/jact.11.61
- Theoretical and experimental research of external prestressed timber beams in variable moisture conditions vol.4, pp.2, 2015, https://doi.org/10.12989/csm.2015.4.2.191
- Modal Test on an External Prestressed Steel Beam vol.446-449, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.446-449.3123
- Ultimate strength of composite structure with different degrees of shear connection vol.11, pp.5, 2010, https://doi.org/10.12989/scs.2011.11.5.375
- Software for application of Newton-Raphson method in estimation of strains in prestressed concrete girders vol.10, pp.2, 2010, https://doi.org/10.12989/cac.2012.10.2.121
- Stiffness of hybrid systems with and without pre-stressing vol.9, pp.2, 2020, https://doi.org/10.12989/csm.2020.9.2.147