참고문헌
- Alwar, R.S., Rao, N.R. and Rao, M.S. (1975), "Altenative procedure in dynamic relaxation", Comput. Struct., 5, 271-274. https://doi.org/10.1016/0045-7949(75)90031-0
- Bardet, J.P. and Proubet, J. (1991), "Adaptive dynamic relaxation for statics of granular materials", Comput. Struct., 39, 221-229. https://doi.org/10.1016/0045-7949(91)90020-M
- Brew, J.S. and Brotton, M. (1971), "Non-linear structural analysis by dynamic relaxation method", Int. J. Numer. Meth. Eng., 3, 463-483. https://doi.org/10.1002/nme.1620030403
- Bunce, J.W. (1972), "A note on estimation of critical damping in dynamic relaxation", Int. J. Numer. Meth. Eng., 4, 301-304. https://doi.org/10.1002/nme.1620040214
- Cassell, A.C. and Hobbs, R.E. (1976), "Numerical stability of dynamic relaxation analysis of non-linear structures", Int. J. Numer. Meth. Eng., 10, 1407-1410. https://doi.org/10.1002/nme.1620100620
- Cassell, A.C., Kinsey, P.J. and Sefton, D.J. (1968), "Cylindrical shell analysis by dynamic relaxation", Proc. ICE, 39, 75-84. https://doi.org/10.1680/iicep.1968.8109
- Day, A.S. (1965), "An introduction to dynamic relaxation", The Engineer, 219, 218-221.
- Felippa, C.A. (1982), "Dynamic relaxation under general increment control", Math. Prog., 24, 103-133.
- Felippa, C.A. (1999), Nonlinear Finite Element Methods, ASEN 5017, Course Material, http://kaswww.colorado. edu/courses.d /NFEMD/;Spring.
- Frankel, S.P. (1950), "Convergence rates of iterative treatments of partial differential equations", Math. Tables Other Aids Comput., 4(30), 65-75. https://doi.org/10.2307/2002770
- Frieze, P.A., Hobbs, R.E. and Dowling, P.J. (1978), "Application of dynamic relaxation to the large deflection elasto-plastic analysis of plates", Comput. Struct., 8, 301-310. https://doi.org/10.1016/0045-7949(78)90037-8
- Han, S.E. and Lee, K.S. (2003), "A study on stabilizing process of unstable structures by dynamic relaxation method", Comput. Struct., 80, 1677-1688.
- Kadkhodayan, M. and Zhang, L.C. (1995), "A consistent DXDR method for elastic-plastic problems", Int. J. Numer. Meth. Eng., 38, 2413-2431. https://doi.org/10.1002/nme.1620381407
- Kadkhodayan, M., Alamatian, J. and Turvey, G.J. (2008), "A new fictitious time for the dynamic relaxation (DXDR) method", Int. J. Numer. Meth. Eng., 74, 996-1018. https://doi.org/10.1002/nme.2201
- Kadkhodayan, M., Zhang, L.C. and Swerby, R. (1997), "Analysis of wrinkling and buckling of elastic plates by DXDR method", Comput. Struct., 65, 561-574. https://doi.org/10.1016/S0045-7949(96)00368-9
- Murphy, J., Ridout, D. and McShane, B. (1988), Numerical Analysis Algorithms and Computation, Ellis Horwood Limited, New York.
- Otter, J.R.H. (1966), "Dynamic relaxation", Proc. ICE, 35, 633-656. https://doi.org/10.1680/iicep.1966.8604
- Papadrakakis, M. (1981), "A method for automatic evaluation of the dynamic relaxation parameters", Comput. Meth. Appl. Mech. Eng., 25, 35-48. https://doi.org/10.1016/0045-7825(81)90066-9
- Pasqualino, I.P. and Estefan, S.F. (2001), "A nonlinear analysis of the buckle propagation problem in deepwater piplines", Int. J. Solids Struct., 38, 8481-8502. https://doi.org/10.1016/S0020-7683(01)00113-5
- Qiang, S. (1988), "An adaptive dynamic relaxation method for non-linear problems", Comput. Struct., 30, 855- 859. https://doi.org/10.1016/0045-7949(88)90117-4
- Ramesh, G. and Krishnamoorthy, C.S. (1993), "Post-buckling analysis of structures by dynamic relaxation", Int. J. Numer. Meth. Eng., 36, 1339-1364. https://doi.org/10.1002/nme.1620360806
- Ramesh, G. and Krishnamoorthy, C.S. (1994), "Inelastic post-buckling analysis of truss structures by dynamic relaxation method", Int. J. Numer. Meth. Eng., 37, 3633-3657. https://doi.org/10.1002/nme.1620372105
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Nonlinear dynamic analysis by dynamic relaxation method", Struct. Eng. Mech., 28(5), 549-570. https://doi.org/10.12989/sem.2008.28.5.549
- Rushton, K.R. (1968), "Large deflection of variable-tickness plates", Int. J. Mech. Sci., 10, 723-735. https://doi.org/10.1016/0020-7403(68)90086-6
- Saka, M.P. (1990), "Optimum design of pin-jointed steel structures with practical applications", J. Struct. Eng., ASCE, 116, 2599-2619. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:10(2599)
- Shawi, F.A.N. and Mardirosion, A.H. (1987), "An improved dynamic relaxation method for the analysis of plate bending problems", Comput. Struct., 27, 237-240. https://doi.org/10.1016/0045-7949(87)90091-5
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill Book Company.
- Turvey, G.J. and Salehi, R.E. (2005), "Annular sector plates : Comparison of full-section and layer yield prediction", Comput. Struct., 83, 2431-2441. https://doi.org/10.1016/j.compstruc.2005.03.025
- Turvey, G.J. and Salehi, R.E. (1990), "DR large deflection analysis of sector plates", Comput. Struct., 34, 101- 112. https://doi.org/10.1016/0045-7949(90)90304-K
- Ugural, A.C. and Fenster, S.K. (1987), Advanced Strength and Applied Elasticity. Elsevier, New York.
- Undewood, P. (1983), "Dynamic relaxation. computational method for transient analysis", Chapter 5, 245-256.
- Welsh, A.K. (1967), "Discussion on dynamic relaxation", Proc. ICE, 37, 723-750. https://doi.org/10.1680/iicep.1967.8278
- Wood, R.D. (2002), "A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes", Comput. Struct., 80, 2115-2120. https://doi.org/10.1016/S0045-7949(02)00274-2
- Wood, W.L. (1971), "Note on dynamic relaxation", Int. J. Numer. Meth. Eng., 3, 145-147. https://doi.org/10.1002/nme.1620030115
- Zhang, L.C. and Yu, T.X. (1989), "Modified adaptive dynamic relaxation method and its application to elasticplastic bending and wrinkling of circular plates", Comput. Struct., 34, 609-614.
- Zhang, L.C., Kadkhodayan, M. and Mai, Y.W. (1994), "Development of the maDR method", Comput. Struct., 52, 1-8. https://doi.org/10.1016/0045-7949(94)90249-6
- Zienkiewicz, O.C. and Lohner R. (1985), "Accelerated relaxation or direct solution future prospects for FEM", Int. J. Numer. Meth. Eng., 21, 1-11. https://doi.org/10.1002/nme.1620210103
피인용 문헌
- Fictitious Time Step for the Kinetic Dynamic Relaxation Method vol.21, pp.8, 2014, https://doi.org/10.1080/15376494.2012.699603
- Comparative analysis of three-dimensional frames by dynamic relaxation methods 2018, https://doi.org/10.1080/15376494.2017.1285462
- Mixing dynamic relaxation method with load factor and displacement increments vol.168, 2016, https://doi.org/10.1016/j.compstruc.2016.02.011
- Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories vol.93, pp.2, 2011, https://doi.org/10.1016/j.compstruct.2010.06.024
- Numerical study of dynamic relaxation with kinetic damping applied to inflatable fabric structures with extensions for 3D solid element and non-linear behavior vol.49, pp.11, 2011, https://doi.org/10.1016/j.tws.2011.07.011
- Displacement-based methods for calculating the buckling load and tracing the post-buckling regions with Dynamic Relaxation method vol.114-115, 2013, https://doi.org/10.1016/j.compstruc.2012.10.023
- Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm vol.48, pp.5, 2011, https://doi.org/10.1016/j.ijsolstr.2010.10.029
- Explicit dynamic analysis using Dynamic Relaxation method vol.175, 2016, https://doi.org/10.1016/j.compstruc.2016.07.008
- Efficiency of dynamic relaxation methods in nonlinear analysis of truss and frame structures vol.112-113, 2012, https://doi.org/10.1016/j.compstruc.2012.08.007
- Analysis of stabilizing process for stress-erection of Strarch frame vol.59, 2014, https://doi.org/10.1016/j.engstruct.2013.09.043
- A new formulation for fictitious mass of the Dynamic Relaxation method with kinetic damping vol.90-91, 2012, https://doi.org/10.1016/j.compstruc.2011.10.010
- Finding equilibrium paths by minimizing external work in dynamic relaxation method vol.40, pp.23-24, 2016, https://doi.org/10.1016/j.apm.2016.07.017
- An efficient explicit framework for determining the lowest structural buckling load using Dynamic Relaxation method vol.45, pp.4, 2017, https://doi.org/10.1080/15397734.2016.1238765
- Form finding and analysis of inflatable dams using dynamic relaxation vol.267, 2015, https://doi.org/10.1016/j.amc.2014.12.054
- Timestep Selection for Dynamic Relaxation Method vol.40, pp.1, 2012, https://doi.org/10.1080/15397734.2011.599311
- Large deflection analysis of shear deformable radially functionally graded sector plates on two-parameter elastic foundations vol.42, 2013, https://doi.org/10.1016/j.euromechsol.2013.06.006
- A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling vol.15, pp.5, 2014, https://doi.org/10.1631/jzus.A1300248
- Estimating the Region of Attraction via collocation for autonomous nonlinear systems vol.41, pp.2, 2012, https://doi.org/10.12989/sem.2012.41.2.263
- A dynamic-relaxation formulation for analysis of cable structures with sliding-induced friction vol.126-127, 2017, https://doi.org/10.1016/j.ijsolstr.2017.08.008
- On the application of the maximum entropy meshfree method for elastoplastic geotechnical analysis vol.84, 2017, https://doi.org/10.1016/j.compgeo.2016.11.015
- Creep and recovery of viscoelastic laminated composite plates vol.181, 2017, https://doi.org/10.1016/j.compstruct.2017.08.094
- A novel time integration formulation for nonlinear dynamic analysis vol.69, 2017, https://doi.org/10.1016/j.ast.2017.07.032
- Computing the structural buckling limit load by using dynamic relaxation method vol.81, 2016, https://doi.org/10.1016/j.ijnonlinmec.2016.01.022
- Dynamic Relaxation Method for Load Capacity Analysis of Reinforced Concrete Elements vol.8, pp.3, 2018, https://doi.org/10.3390/app8030396
- A fast and accurate dynamic relaxation scheme pp.2095-2449, 2018, https://doi.org/10.1007/s11709-018-0486-2
- An incremental iterative solution procedure without predictor step vol.27, pp.1, 2018, https://doi.org/10.1080/17797179.2018.1455028
- Geodesic shape finding of membrane structure with geodesic string by the dynamic relaxation method vol.39, pp.1, 2011, https://doi.org/10.12989/sem.2011.39.1.093
- Ultimate load capacity of unit Strarch frames using an explicit numerical method vol.13, pp.6, 2010, https://doi.org/10.12989/scs.2012.13.6.539
- A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code vol.279, pp.None, 2010, https://doi.org/10.1016/j.cma.2014.06.034
- Comparison of viscous and kinetic dynamic relaxation methods in form-finding of membrane structures vol.2, pp.1, 2017, https://doi.org/10.12989/acd.2017.2.1.071
- Geometrically nonlinear analysis of shells by various dynamic relaxation methods vol.14, pp.5, 2017, https://doi.org/10.1108/wje-10-2016-0109
- Dynamic relaxation method based on Lanczos algorithm vol.112, pp.10, 2010, https://doi.org/10.1002/nme.5565
- A fast and accurate dynamic relaxation approach for form-finding and analysis of bending-active structures vol.34, pp.1, 2019, https://doi.org/10.1177/0956059919864279
- Finding buckling points for nonlinear structures by dynamic relaxation scheme vol.14, pp.1, 2010, https://doi.org/10.1007/s11709-019-0549-z
- A new formulation for fictitious mass of viscous dynamic relaxation method vol.48, pp.5, 2020, https://doi.org/10.1080/15397734.2019.1633342
- Lagrangian interpolation for kinetic dynamic relaxation method with the variable load factor vol.43, pp.2, 2021, https://doi.org/10.1007/s40430-021-02819-7