Photosynthetic Activity of Quercus acutissima Seedlings Grown under Artificially Acidified Soil Conditions

토양산성화 조건하에서 생육시킨 상수리나무 묘목의 광합성 활성

  • Jin, Hyun-O (College of Life Science, Kyunghee University) ;
  • Bang, Sun-Hee (College of Life Science, Kyunghee University) ;
  • Lee, Choong-Hwa (Department of Forest Conservation, Korea Forest Research Institute)
  • 진현오 (경희대학교 생명과학대학) ;
  • 방선희 (경희대학교 생명과학대학) ;
  • 이충화 (국립산림과학원 산림보전부)
  • Received : 2010.08.09
  • Accepted : 2010.09.10
  • Published : 2010.12.30

Abstract

The effects of soil acidification on the photosynthetic activity of Quercus acutissima seedlings were investigated. We measured the growth and photosynthetic activity of the seedlings in relation to soil acidification. The dry weights of the seedlings were reduced according to the amount of $H^+$ in the soil. The concentrations of Al in needles at the 90 meq $H^+$ were significantly higher than those at the control. The contents of chlorophyll in needles at 90 meq $H^+$ were significantly lower than those at the control. The net photosynthetic rates of the seedlings in the acidified soil were reduced by increasing the amount of $H^+$ to the soil. The carboxylation efficiencies(CE) of photosynthesis were reduced in the seedlings grown in the acidified soil. These results suggested that the soil acidification induced the inhibition of photochemical reactions and $CO_2$ fixation of photosynthesis.

상수리나무 묘목의 생장과 광합성 활성에 미치는 토양산성화의 영향을 조사하였다. 토양내 $H^+$ 부하량이 증가할수록 상수리나무 묘목의 건중량은 감소하였으며, RGR 및 NAR도 저하하였다. 또한 토양 내 $H^+$ 부하량이 증가함에 따라 상수리나무 묘목의 순광합성속도, 증산속도 및 암호흡속도가 감소하였다. 이는 토양산성화의 직접적인 영향으로 뿌리의 생장이 억제되어, 이로 인해 영양분의 흡수가 원활히 이루어지지 않아 잎의 광합성량이 감소된 것으로 판단된다. 엽내 N농도 및 chlorophyll함량과 $CO_2$고정효율과의 사이에 매우 높은 정의 상관관계(p<0.01)가 인정되었다. 토양으로의 $H^+$ 부하량의 증가에 따른 N함량 및 chlorophyll함량의 저하가 상수리나무 묘목의 $CO_2$고정계의 활성을 감소시켰다고 판단된다. 이러한 광합성 활성의 감소가 토양산성화 조건하에서 생육시킨 상수리나무 묘목의 생장저하 원인이라 사료된다.

Keywords

References

  1. 우수영, 이성한, 이동섭. 2004. 대기오염 피해를 받은 서울시내 가로수의 엽록소함량과 광합성 특성. 한국농림기상학회지 6(1): 24-29.
  2. 이경재, 조우, 한봉호. 1996. 서울 도시생태계 현황과 회복대책(I) -산림지역 식물군집구조-. 한국환경생태학회지 10(1): 113-127.
  3. 이돈구, 김갑태, 신준환, 주광영. 1984. 인공산성우가 소나무와 잣나무 유묘의 엽록소 함량에 미치는 영향. 서울대학교 농과대학 관악수목원연구보고 9: 15-19.
  4. 이수욱, 민일식. 1989. 대기오염 및 산성우가 삼림생태 계의 토양산도 및 양료분포에 미치는 영향. 한국임학회지 78: 11-25.
  5. 이종식, 이규승. 2000. 우리나라 강우의 산성도 중화에 대한 ${NH_4}^+$$Ca^{2+}$의 영향. 한국환경농학회지 19(1): 72-74.
  6. 이충화, 유정환, 김영걸, 변재경, 김춘식, 이승우, 이봉수. 1999. 토양산성화가 소나무 묘목의 생장에 미치는 영향. 산림과학논문집 61: 90-96.
  7. 전영신, 조하만, 권원태. 1994. 한반도 중부지방에서 관 측된 1992-1993년 산성비의 특성과 공기 이동 경로 분석. 대기보전학회지 10(3): 175-182.
  8. 진현오, 방선희, 이충화. 2008. 토양산성화가 소나무, 상수리나무 묘목의 생장 및 영양상태에 미치는 영향. 한국임학회지 97(3): 266-273.
  9. 三輪 誠, 伊豆田 猛, 戶塚 績. 1994. 母材が異なる3種類 の土壤の酸性化がスギ苗の成長に及ぼす影響. 大氣汚染學會誌 29: 254-263.
  10. 松本陽介, 丸山 溫, 森川 靖. 1992. 杉の水分生理特性と 東平野における近年の象動 -樹木の衰退現象に連して-. 森林立地 34: 2-13.
  11. 松本英明. 1994. 植物におけアルミニウ耐性の生理生化 - 低pH土と植物-. 日本土壤肥料學會編. 博友社. pp. 59-98.
  12. 太田垣 貴啓, 三輪 誠, 伊豆田 猛, 戶塚 績. 1996. 硫酸 添加により酸性化させた褐色森林土で育成したスギ苗の光 合成活性. 大氣環境學會誌 31: 11-19.
  13. 戶塚 績. 1984. 植物の成長に及ぼす大氣汚染ガスの影響. 國立公害硏究所硏究報告 64: 99-119.
  14. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24: 1-15. https://doi.org/10.1104/pp.24.1.1
  15. Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S. and Davison, A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32: 85-100. https://doi.org/10.1016/0098-8472(92)90034-Y
  16. Choi, D.S., Jin, H.O., Lee, C.H., Kim, Y.C. and Kayama, M. 2005. Effects of soil acidification on the growth of Korean pine(Pinus koraiensis) seedlings in a granitederived forest soil. Environmental Science 12: 33-47.
  17. Farquhar, G.D. and Sharkey, T.D. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33: 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533
  18. Ferenbaugh, R.W. 1976. Effects of simulated acid rain on Phaseolus vulgaris L.(Fabaceae). Amer. J. Bot. 63: 283-288 https://doi.org/10.2307/2441572
  19. Fornasiero, R.B. 2003. Fluorides effects on Hypericum perforatum plants: first field observations. Plant Science 165: 507-513. https://doi.org/10.1016/S0168-9452(03)00205-X
  20. Hampp, R. and Schnabl, H. 1975. Effect of aluminium ions on $14CO_2$ fixation and membrane system of isolated spinach chloroplast. Z. Pflanzenphysiol. 76: 300-306.
  21. Hunt, R. 1978. Plant Growth Analysis. Edward Arnold Publishers Ltd. pp. 8-25.
  22. Izuta, T., Yamaoka, T., Nakaji, T., Yonekura, T., Yokoyama, M., Matsumura, H., Ishida, S., Yazaki, K., Funada, R. and Koike, T. 2001. Growth, net photosynthetic rate, nutrient status and secondary xylem anatomical characteristics of Fagus crenata seedlings grown in brown forest soil acidified with $H_2SO_4$ solution. Water, Air and Soil Pollution 130: 1007-1012. https://doi.org/10.1023/A:1013948026482
  23. Krause, G.H.M., Arndt, U., Brandt, G.J., Bucher, J., Kent, G. and Matzner, E. 1986. Forest decline in Europe: Development and possible causes. Water, Air and Soil Pollution 31: 647-668. https://doi.org/10.1007/BF00284218
  24. Larcher, W. 2003. Physiological Plant Ecology. 4th ed, Springer-Verlag, New York. 506pp.
  25. Lee, C.H., Lee, S.W., Kim, Y.K. and Cho, J.H. 2003. Atmospheric quality, soil acidification and tree dicline in three Korean red pine forest. Korean Journal of Ecology 26(2): 87-89. https://doi.org/10.5141/JEFB.2003.26.2.087
  26. Matyssek, R., Reich, P., Oren, R. and Winner, W.E. 1995. Response mechanisms of conifers to air pollutants. In Smith, W.K. and T.M. Hinckley(eds.), Ecophysiology of coniferous forests. Academic Press, San Diego, CA. pp. 255-308.
  27. Nihlgärd, B. 1985. The ammonium hypothesis: An additional explanation to the forest dieback in Europe. Ambio 14: 2-8.
  28. Reich, P.B., Koike, T., Gowers, S.T. and Schoettle, A.W. 1995. Causes and consequences of variation in conifer leaf life-span. In Smith, W.K. and T.M. Hinckley(eds.), Ecophysiology of coniferous forests. Academic Press, San Diego, CA. pp 225-254.
  29. Shareky, T.D. 1985. Photosynthesis in intact leaves of $C_3$ plants: physics, physiology and rate limitations. The Botanical Review 51: 53-105. https://doi.org/10.1007/BF02861058
  30. Tesche, M., Wienhaus O., Codzik, St. and Materna, J. 1993. Stress and decline in air-polluted forest ecosystems of somr countries in the eastern parts of central Europe. XV. International Botanical Congress(Tokyo).
  31. Ulrich, B. 1989. Effect of acidic precipitation on forest ecosystems in Europe. In Adriano, D.C. and A.H. Johnson (eds.), Acid Precipitation Vol. 2: Biological and Ecological Effect. Springer-Verlag 189-272.
  32. von Caemmerer, S. and G. D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376-387. https://doi.org/10.1007/BF00384257