Study of Cosmeceutical Activities of Hovenia dulcis var. koreana Nakai Extracts

헛개나무 추출물의 화장품 생리활성에 관한 연구

  • Kim, Sea-Hyun (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Jun, Dong-Ha (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Jang, Min-Jung (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Lee, Jin-Tae (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Lee, Chang-Eon (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Han, Jin-Gyu (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Kim, Jin-Chul (TRG Korea Co., Ltd.) ;
  • Lee, Do-Hyung (Department of Forest Resources, Yeungnam University)
  • 김세현 (국립산림과학원 산림자원육성부) ;
  • 전동하 (대구한의대학교 화장품약리학과) ;
  • 장민정 (대구한의대학교 화장품약리학과) ;
  • 이진태 (대구한의대학교 화장품약리학과) ;
  • 이창언 (대구한의대학교 화장품약리학과) ;
  • 한진규 (국립산림과학원 산림자원육성부) ;
  • 김진철 ((주)튜링겐코리아) ;
  • 이도형 (영남대학교 산림자원학과)
  • Received : 2010.08.04
  • Accepted : 2010.09.06
  • Published : 2010.12.30

Abstract

Hovenia dulcis var. koreana Nakai has been reported to liver function improvement effect as functional materials for food and medicine. On these facts, biological activity and safety test were conducted to evaluate biological activities of the fruit petiole and root extracts of H. dulcis as a potential cosmeceutical ingredient. Cosmeceutica activities of different extracts were examined by l.l-diphenyl-2-picrylhydrazyl (DPPH) radical generation, the ABTS+ cation decolorization, tyrosinase activity, collagenase activity and elastase activity compared with the properties of the commercial antioxidant butylated hydroxytoluene (BHT) and L-ascorbic acid (AA). The antioxidant activities HDFW, HDFE, HDRW and HDRE were 83.6%, 39.6%, 85.9% and 74.5% in DPPH assay, 99.5%, 13.7%, 96.4% and 88.6% in ABTS assay. Tyrosinase inhibitiory activities HDFW were 56.0% at 1,000 ppm. Measured the inhibition effect of the H. dulcis about collagenase and elastase where break the peptide bonds in collagen and enzyme from the class of proteases where exists in the dermis. The H. dulcis was inhibition the two kind enzymesm, collagenase activities being on a high scale inhibition, was same concentration. Uses the anti oxidation effect and a anti-wrinkle effect of this resultant H. dulcis and with the functional cosmetics use is thought with the fact that will be possible.

본 연구는 기능성 식 약용 소재로 널리 이용되는 헛개나무의 화장품원료로의 개발을 위하여 다양한 생리활성을 측정하였다. 헛개나무 과병과 뿌리의 열수추출물 및 에탄올추출물에 대한 DPPH법, ABTS법을 이용하여 항산화활성 측정시 열매, 뿌리 모두 열수추출물에서 뛰어난 항산화효과를 나타냈으며, 멜라닌 색소합성에 관여하는 tyrosinase의 활성을 측정한 결과 tyrosinase 저해활성은 과병에탄올추출물(HDFE) 500 mg/L에서 32.0%의 억제능을 확인 할 수 있었고, 뿌리에탄올추출물(HDRE)은 21.8%의 억제능을 보였다. 더 높은 농도인 1,000 mg/L에서는 과병열수추출물(HDFW), HDFE 순으로 저해활성이 나타났다. 주름개선효과에 관한 활성은 collagenase와 elastase 저해활성을 통해 측정하였다. 그 결과 elastase에서 과병에탄올 추출물을 제외한 모든 추출물이 두 효소를 모두 저해하는 것으로 나타났으며, 같은 농도에서는 collagenase의 활성이 더 크게 저해됨을 보였다. 이와 같은 결과를 통해 헛개나무추출물의 항산화활성과 미백 및 주름개선효과를 이용하여 기능성 화장품으로 활용이 가능할 것으로 사료된다.

Keywords

References

  1. Association of Analytical Chemists. 1984. Offical methods of analysis of the AOAC. 14th ed. Washington (DC): AssociationofAnalytical Chemists INC.
  2. Black, H.S. 1987. Photochem photobiol 46(2): 213. https://doi.org/10.1111/j.1751-1097.1987.tb04759.x
  3. Blois, M.S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1120.
  4. Cannell, R.J., Kellam, S.J., Owsianka, A.M. and Walker, J.M. 1987. Results of a large scale screen of microalgae for the production of protease inhibitors. Planta Medica 54(1): 4-10.
  5. Choi, Y.M., Kim, M.H., Shin, J.J., Park, J.M. and Lee, J.S. 2003. The antioxidant activities of the some commercial teas. Journal of the Korean Society of Food Science and Nutrition 32(5): 723-727. https://doi.org/10.3746/jkfn.2003.32.5.723
  6. Demina, N.S. and Lysenko, S.V. 1996. Collagenolytic enzymes synthesized by microorganisms. Mikrobiologiia 65(3): 293-304.
  7. DeWitt, D.L., Rollins, T.E., Day, J.S., Gauger, J.A. and Smith, W.L. 1981. Orientation of the active site, and antigenic determinants of prostaglandin endoperoxide of synthase in the endoplasmic reticulum. Journal of Biological chemistry 256(20): 10375-10382.
  8. Duke, E.J., Joyce, P. and Ryan, J.P. 1973. Characterization of alternative molecular forms of xanthine oxidase in the mouse. Biochemical. Journal 131(2): 187-190.
  9. El-Domyati, M., Attia, S., Saleh, F., Brown, D., Birk, D.E., Gasparro, F., Ahmad, H. and Uitto, J. 2002. Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Experimental Dermatology 11(5): 398-405. https://doi.org/10.1034/j.1600-0625.2002.110502.x
  10. Giacomoni, P.U. and Rein, G. 2001. Factors of skin ageing share common mechanisms. Biogerontology 2(4): 219-229. https://doi.org/10.1023/A:1013222629919
  11. Grant, N.H. and Alburn, H.E. 1959. Studies on the collagenases of Clostridium histolyticum. Archives of biochemistry and biophysics 82(2): 245-255. https://doi.org/10.1016/0003-9861(59)90120-1
  12. Hayashi, T., Sawa, K., Kawasaki, M., Arisawa, M., Shimizu, M. and Morita, N. 1988. Inhibition of cow's milk xanthine oxidase by flavonoids. Journal of Natural Products 51(2): 345-348. https://doi.org/10.1021/np50056a030
  13. Heo, J.C., Park, J.Y., An, S.M., Lee, J.M., Yun, C.Y., Shin, H.M., Kwon, T.K. and Lee, S.H. 2006. Antioxidant and antitumor activities of crude extracts by Gastrodia elata Blume. Korean Journal of Food Preservation 13(1): 83-87.
  14. Jeroma, S.P., Gabrielle, L. and Raul, F. 1998. Identification of collagen fibrils in scleroderma skin. Journal of Investigative Dermatology 90(1): 48-54.
  15. Jung, M.S., Lee, G.S. and Chae, H.J. 2004. In vitro biological activity assay of ethalol extract of Radish. Journal of the Korean Society for Applied Biological Chemistry. 47(1): 67-71.
  16. Kameyama, K., Takemura, T., Hamada, Y., Sakai, C., Kondoh, S. and Nishiyama, S. 1993. Pigment production in murine melanoma cells is regulated by tyrosinase, tysinase-related protein 1(TRP 1), dopachrome tautormerase(TRP 2) and a melanogenic inhibitor. Journal of Investigative Dermatology 100: 126-131. https://doi.org/10.1111/1523-1747.ep12462778
  17. Kim, H.J., Jun, B.S., Kim, S.K., Cha, J.Y. and Cho, Y.S. 2000. Polyphenolic compound content and flower of Safflower (Carthamus tinctorius L.). Journal of the Korean Society of Food Science and Nutrition 29(6): 1127-1132.
  18. Kim, S.M., Kang, S.H., Ma, J.Y. and Kim, J.H. 2006. A study on the extraction and efficacy of bioactivite compound from Hovenia dulcis, Korean Journal of Biotechnology and Bioengineering 21: 11-15.
  19. Lee, S.Y., An, J.H. and Cho, H.Y. 2003. Isolation and characterization of MMP-1 inhibitor Peptide from Crataegus pinnatifida bunge in fibroblast cell line HS68 cells. Journal of the Korean society of Agricultural and Biotechnology 46(1): 60-65.
  20. Marklund, S. and Marklund, G. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 468.
  21. Pryor, W.A. 1986. Oxy-radicals and related species : their formation, lifetimes, and reactions. Annual Review Physiology 48: 657-667. https://doi.org/10.1146/annurev.ph.48.030186.003301
  22. Roberta, R., Nicoletta, P., Anna, P., Ananth, P., Min, Y. and Catherine R.E. 1999. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology & Medicine, 26(9): 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Roth, G.J., Siok, C.J. and Ozols, J. 1980. Structural characteristics of prostaglandin synthetase from sheep vesicular gland. Journal of Biological chemistry 255(4): 1301-1304.
  24. Stirpe, F. and Della Corte E. 1969. The regulation of rat liver xanthine oxidase. Journal of Biochemistry 244: 3855-3861.
  25. Tsuji, N., Moriwaki, S., Suzuki, Y., Takema, Y. and Imokawa, G. 2001. The role of elastases secreted by fibroblasts in wrinkle formation: implication through selective inhibition of elastase activity. Photochemistry and Photobiology 74(2): 283-90. https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2
  26. Wang, M.F., Shao, Y., Li, J.G. and Zhu, N.Q. 1998. Rngarajan M, Lavoie EJ, HOCT. Antioxidative phenolic compound from sage (Salivia officinalis). Journal of Agricultural and Food Chemistry 46: 4869-4873. https://doi.org/10.1021/jf980614b
  27. Wlaschek, M., Tantcheva-Poor, I., Naderi, L., Ma, W., Schneider, L.A., Razi-Wolf, Z., Schuller, J. and Scharffetter- Kochanek, K. 2001. Solar UV irradiation and dermal photoaging. Journal of Photochemistry and Photobiology Biology 63(1):41-51. https://doi.org/10.1016/S1011-1344(01)00201-9
  28. Yagi, A., Kanbara, T. and Morinobu, N. 1986. The effect of tyrosinase inhibition for aloe. Planta Medica. 3981: 517-519.
  29. Yohsikawa, M. and Murakami, T. 1996. Four methylmigrated 16, 17-seco-dammarane triterpene glycosides from chines natural Medicine, Hovenia semen seu fructus, the seeds and fruit of Hovenia dulcis Thumb. Chemcal and Pharmaceutical Bulletin 44: 1736-1743. https://doi.org/10.1248/cpb.44.1736
  30. Yoneta, A., Yamashita, T., Jin, H.Y., Kondo, S. and Jimbow, K. 2004. Ectopic expression of tyrosinase increases melanin synthesis and cell death following UVB irradiation in fibroblasts from familial atypical multiple mole and melanoma patients. Melanoma research 14(5): 387-394. https://doi.org/10.1097/00008390-200410000-00009
  31. Ziegler, D.W., Hutchinson, H.D. and Kissling, R.E. 1971. Induction of xanthine oxidase by virus infections in newborn mice. Infect. Immun 3(2): 237-242.
  32. Wunsch, E. and Heindrich, H.G. 1963. Zur quantitativen Bestimmung der Kollagenase. Hoppe-Seyler's Zeitschrift fur physiologische chemie 333: 149-151. https://doi.org/10.1515/bchm2.1963.333.1.149