Approaches for Developing a Korean Model Through Analysis of Overseas Forest Soil Carbon Models

해외 산림토양탄소모델 분석을 통한 한국형 모델 개발방안 연구

  • Lee, Ah-Reum (Department of Climate Environment, Graduate School of Life and Environmental Sciences, Korea University) ;
  • Yi, Koong (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Son, Yo-Whan (Department of Climate Environment, Graduate School of Life and Environmental Sciences, Korea University) ;
  • Kim, Rae-Hyun (Division of Forest Management, Korea Forest Research Institute) ;
  • Kim, Choon-Sig (Department of Forest Resources, Jinju National University) ;
  • Park, Gwan-Soo (Department of Forest Resources, Chungnam National University) ;
  • Lee, Kyeong-Hak (Division of Forest Management, Korea Forest Research Institute) ;
  • Yi, Myong-Jong (Department of Forest Resources, Kangwon National University)
  • 이아름 (고려대학교 생명환경과학대학원 기후환경학과) ;
  • 이궁 (고려대학교 대학원 환경생태공학과) ;
  • 손요환 (고려대학교 생명환경과학대학원 기후환경학과) ;
  • 김래현 (국립산림과학원 탄소경영연구과) ;
  • 김춘식 (진주산업대학교 산림자원학과) ;
  • 박관수 (충남대학교 산림환경자원학과) ;
  • 이경학 (국립산림과학원 탄소경영연구과) ;
  • 이명종 (강원대학교 산림자원학과)
  • Received : 2010.07.05
  • Accepted : 2010.09.30
  • Published : 2010.12.30

Abstract

Forest soil carbon model is a useful tool for understanding complex soil carbon cycle in forests and estimating dynamics of soil carbon to climate change. However, studies on development and application of the model are insufficient in Korea. The need for development of Korean model is now growing, because there are notable problems and limitations for adapting overseas models in Korea to meet the requirements of the international organizations such as IPCC, which demands highly reliable data for national reports. Therefore, we have studied 7 overseas forest soil carbon models (CBM-CFS3, CENTURY, Forest-DNDC, ROMUL, RothC, Sim-CYCLE, YASSO), analyzed and compared their structure, decomposition mechanism, initializing process and, input and output data. Then we evaluated applicability of these models in Korea with three criteria; availability of input data, performance of model, and possibility of regional modification. Finally, a systematic process for applying a new model was suggested based on these analyses.

산림토양탄소모델은 산림 내 복잡한 토양탄소 순환과정을 이해하고 기후변화에 따른 토양탄소동태를 예측하는데 유용한 도구이나, 국내에서는 모델의 개발 및 활용 연구가 미흡하다. 한편 IPCC 국가보고서와 같이 국제 사회에서 탄소계정에 대한 높은 수준의 연구결과를 요구하는 반면, 이를 반영하기 위한 기존 해외 모델의 국내 적용은 여러 가지 제약과 문제가 발생할 수 있기 때문에 국내 모델 개발의 필요성이 점차 증가하고 있다. 따라서 본 연구에서는 문헌조사를 바탕으로 국내 산림에서 적용이 가능한 7가지 해외 토양탄소모델(CBM-CFS3, CENTURY, Forest-DNDC, ROMUL, RothC, Sim-CYCLE, YASSO)을 선정하여 이들의 구조, 분해기작, 초기화 과정, 입력 및 출력 자료에 대하여 비교 분석하고, 모델의 국내 적용 가능성을 입력 자료 이용 가능성, 모델의 성능, 지역적 보정 가능성의 세 가지 기준을 토대로 평가하였다. 또한, 이를 기반으로 새로운 모델을 개발하고 적용하기 위한 일련의 과정을 제시하였다.

Keywords

References

  1. 김순아, 이우균, 손요환, 조용성, 이미선. 2009. 산림에 대한 기후변화 영향평가 모형의 국내 적용성 분석. 한국임학회지 98(1): 33-48.
  2. 김종찬, 정진현, 김성호, 심우범, 류주형, 김준섭, 서수안, 유병오. 2009. 제4차 전국산림자원조사-국유림 총괄편. 국립산림과학원 연구자료 제354호.
  3. 손영모, 이경학, 김종찬, 김래현. 2007. 우리나라 산림 바이오매스 자원평가. 국립산림과학원 연구보고 07-22.1
  4. 이민아, 이우균, 송철철, 이준학, 최현아, 김태민. 2007. 기온 및 강수량의 시공간 변화예측 및 변이성. 한국GIS학회지 15(3): 1-12.
  5. 이아름, 노남진, 윤태경, 이수경, 서경원, 이우균, 조용성, 손요환. 2009. 연륜연대학적 접근을 이용한 Yasso 모델 의 산림토양탄소 저장량 추정. 한국임학회지 98(6): 791-798.
  6. 정진현, 김춘식, 이원규. 1998. 지역별, 임분별 산림토양 내 탄소량 추정. 산림과학논문집 57: 178-183.
  7. 차유미, 이효신, 문자연, 권원태, 부경온. 2007. ECHO-G/S 를 활용한 미래 동아시아 기후 전망. 대기 17(1): 55-68.
  8. Chertov, O.G., Komarov, A.S., Nadporozhskaya, M., Bykhovets, S.S. and Zudin, S.L. 2001. ROMUL-a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling. Ecological Modelling 138: 289-308. https://doi.org/10.1016/S0304-3800(00)00409-9
  9. Coleman, K. and Jenkinson, D. 2005. RothC-26.3, A model for the turnover of carbon in soils: Model Description and Windows Users Guide. IACR. Rothamsted, Harpenden. pp.46.
  10. Crews, T.E., Kitayama, K., Fownes, J.H., Riley, R.H., Herbert, D.A., Mueller-Dombois, D. and Vitousek, P.M. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5): 1407-1424. https://doi.org/10.2307/1938144
  11. Falloon, P. and Smith, P. 2009. Modelling soil carbon dynamics. pp. 221-244. In : Kutsch, W.L., Bahn, M. and Heinemeyer, A., ed. Soil Carbon Dynamics. Cambridge University Press. Cambridge, U.K.
  12. Ito, A. and Oikawa, T. 2002. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecological Modelling 151: 143-176. https://doi.org/10.1016/S0304-3800(01)00473-2
  13. Janik, L., Spouncer, L., Correll, R. and Skjemstad, J. 2002. Sensitivity analysis of the RothC soil carbon model (Ver. 26.3 Excel${\copyright}$). National Carbon Accounting System Technical Report No.30, pp.61.
  14. Jenkinson, D.S., Adams, D.E. and Wild, A. 1991. Model estimates of $CO_2$ emissions from soil in response to global warming. Nature 351: 304-306. https://doi.org/10.1038/351304a0
  15. Jenkinson, D.S., Andrew, S.P.S, Lynch, J.M., Goss, M.J. and Tinker, P.B. 1990. The turnover of organic carbon and nitrogen in soil and discussion. Philosophical Transactions:Biological Sciences 329: 361-368. https://doi.org/10.1098/rstb.1990.0177
  16. Johnson, D.W. 1992. Effects of forest management on soil carbon storage. Water, Air and Soil Pollution 64: 83-120. https://doi.org/10.1007/BF00477097
  17. Jones, C., Cox, P.M., Essery, R.L.H., Roberts, D.L. and Woodage, M.J. 2003. Strong carbon cycle feedbacks in a climate model with interactive $CO_2$ and sulphate aerosols. Geophysical Research Letters 30(9): 1479. https://doi.org/10.1029/2003GL016867
  18. Kellomaki, S. and Vaisanen, H. 1997. Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecological Modelling 97: 121-140. https://doi.org/10.1016/S0304-3800(96)00081-6
  19. Kirschbaum, M. 1995. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biology and Biochemistry 27: 753-760. https://doi.org/10.1016/0038-0717(94)00242-S
  20. Kull, S.J., Kurz, W.A., Rampley, G.J., Banfield, G.E., Schivatcheva, R.K. and Apps, M.J. 2006. Operationalscale carbon budget model off the Canadian forest sector (CBM-CFS3) version 1.0: USER'S GUIDE. Natural Resources Canada, Canadian Forest Service, Edmonton. pp.321.
  21. Lee, A.R., Noh, N.J., Cho, Y., Lee, W.K. and Son, Y. 2009. Estimating the soil carbon stocks for a Pinus densiflora forest using the soil carbon model, Yasso. Journal of Ecology and Field Biology 32(1): 47-53. https://doi.org/10.5141/JEFB.2009.32.1.047
  22. Li, C., Aber, J., Stange, F., Butterbach-Bahl, K. and Papen, H. 2000. A process-oriented model of $N_2O$ and NO emissions from forest soils: 1. Model development. Journal of Geophysical Research-Atmospheres 105: 4369-4384. https://doi.org/10.1029/1999JD900949
  23. Li, C., Mosier, A., Wassmann, R., Cai, Z., Zheng, X., Huang, Y., Tsuruta, H., Booniawat, J. and Lantin, R. 2004. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochemical Cycles 18: DOI: 10.1029/2003GB002045.
  24. Liski, J., Palosuo, T., Peltoniemi, M. and Sievanen, R. 2005. Carbon and decomposition model Yasso for forest soils. Ecological Modelling 189: 168-182. https://doi.org/10.1016/j.ecolmodel.2005.03.005
  25. Liski, J., Tuomi, M. and Rasinmäki, J. 2009. Yasso07 userinterface manual. www.environment.fi/syke/yasso (2009.04.02)
  26. Lugato, E., Paustian, K. and Giardini, L. 2007. Modelling soil organic carbon dynamics in two long-term experiments of north-eastern Italy. Agriculture, Ecosystems and Environment 120: 423-432. https://doi.org/10.1016/j.agee.2006.11.006
  27. Masera, O.R., Garza-Caligaris, J.F., Kanninen, M., Karjalainan, T., Liski, J., Nabuurs, G.J., Pussinen, A., Jong, B.H.J. and Mohren, G.M.J. 2003. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecological Modelling 164: 177-199. https://doi.org/10.1016/S0304-3800(02)00419-2
  28. McGuire, A.D., Melillo, J.M., Kicklighter, D.W. and Joyce, L.A. 1995. Equilibrium responses of soil carbon to climate change: empirical and process-based estimates. Journal of Biogeography 22: 785-796. https://doi.org/10.2307/2845980
  29. Metsaranta, J.M. and Lieffers, V.J. 2009. Using dendrochronology to obtain annual data for modeling stand development: a supplement to permanent sample plots. Forestry 82(2): 163-173. https://doi.org/10.1093/forestry/cpn051
  30. Meyer, J. Vilen, T., Peltoniemi, M., Faubert, P., Thurig, E., Lindner, M., Faubert, P., Lindner, M., Palosuo, T., Chertov, O., Komarov, A., Mikhailov, A., Suckow, F., Lasch, P., Wattenbach, M., Smith, P. and Gottschalk, P. 2005. Uncertainty estimate of the national level biomass and soil carbon stock and stock change. EFI Report.
  31. Ogle, S.M. and Paustian, K. 2005. Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science 85: 531-540. https://doi.org/10.4141/S04-087
  32. Palosuo, T., Liski, J., Trofymowc, J.A. and Titus, B.D. 2005. Litter decomposition affected by climate and litter quality-Testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment. Ecological Modelling 189: 183-198. https://doi.org/10.1016/j.ecolmodel.2005.03.006
  33. Parton, W.J., Schimel, D.S., Cole, C.V. and Ojima, D.S. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51: 1173-1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x
  34. Patenaude, G., Milne, R. and Dawson, T.P. 2005. Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol. Environmental Science and Policy 8(2): 161-178. https://doi.org/10.1016/j.envsci.2004.12.010
  35. Peltoniemi, M., Thürig, E., Ogle, S., Palosuo, T., Schrumpf, M., Wutzler, T., Butterbach-Bahl, K., Chertov, O., Komarov, A., Mikhailov, A, Gardenas, A, Perry, C., Liski, J., Smith, P. and Makipaa, R. 2007. Models in country scale carbon accounting of forest soils. Silva Fennica 41(3): 572-602.
  36. Plentinger, M.C. and Penning de Vries, F.W.T. 1996. CAMASE: Register of agro-ecosystem models. http://library.wur.nl/way/bestanden/clc/1763788.pdf(2010.03.18)
  37. Post, W.M., Izaurralde, R.C., Mann, L.K. and Bliss, N. 2001. Monitoring and verifying changes of organic carbon in soil. Climate Change 51(1): 73-99. https://doi.org/10.1023/A:1017514802028
  38. Schimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S., Painter, T.H., Parton, W.J. and Townsend, A.R. 1994. Climatic, edaphic and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles 8: 279-293. https://doi.org/10.1029/94GB00993
  39. Shaver, G.R., Billings, W.D., Chapin, F.S.III, Giblin, A.E., Nadelhoffer, K.J., Oechel, W.C. and Rastetter, E.B. 1992. Global change and the carbon balance of arctic ecosystems. BioScience 42(6): 433-441. https://doi.org/10.2307/1311862
  40. Smith, P., Simth, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Goleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewi. ek, H., Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T., Parton, W.J., Thornley, J.H.M. and Whitmore, A.P. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven longterm experiments. Geoderma 81: 153-225. https://doi.org/10.1016/S0016-7061(97)00087-6
  41. Telles, E.D.C., de Camargo, P.B., Martinelli, L.A. Trumbore, S.E., da Costa, E.S., Santos, J., Higuchi, N. and Oliveira, R.C. 2003. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochemical Cycles 17(9):1-12.
  42. Trumbore, S. 2000. Age of organic soil matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological Applications 10: 399-411. https://doi.org/10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2
  43. UNFCCC. 2009. National Reports. http://unfccc.int/national_reports/items/1408.php (2009.10.15)
  44. Wutzler, T. and Reichstein, M. 2007. Soils apart from equilibrium - consequences for soil carbon balance modelling. Biogeosciences 4: 125-136.