Allometry, Biomass and Productivity of Quercus Forests in Korea: A Literature-based Review

  • Li, Xiaodong (Department of Forest Resources, Kangwon National University) ;
  • Yi, Myong-Jong (Department of Forest Resources, Kangwon National University) ;
  • Son, Yo-Whan (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Jin, Guangze (School of Forestry, Northeast Forestry University) ;
  • Lee, Kyeong-Hak (Korean Forest Research Institute) ;
  • Son, Yeong-Mo (Korean Forest Research Institute) ;
  • Kim, Rae-Hyun (Korean Forest Research Institute)
  • Received : 2010.07.28
  • Accepted : 2010.09.28
  • Published : 2010.10.30

Abstract

Publications with the data on allometric equation, biomass and productivity of major oak forests in Korea were reviewed. Different allometric equations of major oak species showed site- or speciesspecific dependences. The biomass of major oak forests varied with age, dominant species, and location. Aboveground tree biomass over the different oak species was expressed as a power equation of the stand age. The proportion of tree component (stem, branch and leaf) to total aboveground biomass differed among oak species, however, biomass ranked stem > branch > leaf in general. The leaf biomass allocation over the different oak species was expressed as a power equation of total aboveground biomass while there were no significant patterns of biomass allocation from stem and branch to the aboveground biomass. Tree root biomass continuously increased with the aboveground biomass for the major oak forests. The relationship between the root to shoot ratio and the aboveground tree biomass was expressed by a logarithmic equation for major oak forests in Korea. Thirteen sets of data were used for estimating the net primary production (NPP) and net ecosystem production (NEP) of oak forests. The mean NPP and NEP across different oak forests was 10.2 and 1.9 Mg C $ha^{-1}year^{-1}$. The results in biomass allocation, NPP and NEP generally make Korean oak forests an important carbon sinks.

Keywords

References

  1. Cairns, M.A., Brown, S., Helmer, E.H. and Baumgardner, G.A. 1997. Root biomass allocation in the world's upland forests. Oecologia 111: 1-11. https://doi.org/10.1007/s004420050201
  2. Choi, Y.C. and Park, I.H. 1993. Biomass and net production of a natural Quercus variabilis forest and a Populus alba ${\times}$ P. glandulosa plantation at Mt. Mohu area in Chonnam. Journal of Korean Forest Society 82(2): 188-194.
  3. Fang, J.Y., Oikawa, T., Kato, T., Mo, W. and Wang, Z.H. 2005. Biomass carbon accumulation by Japan's forests from 1947 to 1995. Global Biogeochemical Cycles 19, GB2004, doi: 10.1029/2004GB002253.
  4. Kim, S.K. and Jeong, J.Y. 1985. A study on the production structure and biomass productivity of Quercus variabilis natural forest. Journal of Korean Forest Society 70: 91-102.
  5. Kwak, Y.-S. and Kim, J.-H. 1992. Nutrient cyclings in Mongolian oak (Quercus mongolica) forest. Journal of Ecology and Field Biology 15: 35-46.
  6. Kwon, K.-C. and Lee, D.K. 2006a. Biomass and annual net production of Quercus mongolica stands in Mt. Joongwang with respect to altitude and aspect. Journal of Korean Forest Society 95(4): 398-404.
  7. Kwon, K.-C. and Lee, D.K. 2006b. Biomass and energy content of Quercus mongolica stands in Gwangyang and Jeju areas. Journal of Korean Wood Science Society 34: 54-65.
  8. Kwon, K.-C. and Lee, D.K. 2006c. Above- and belowground biomass and energy content of Quercus mongolica. Journal of Korean Forest Energy Society 25: 31-38.
  9. Lee, D.K. and Kim, G.T. 1997. Tree form and biomass allocation of Quercus species, Larix leptolepis (Sieb. et Zucc.) Gordon and Pinus koraiensis Sieb. et Zucc. in Kwangju-gun, Kyunggi-do. Journal of Korean Forest Society 86(2): 208-213.
  10. Lee, D.K. and Kwon, K.-C. 2006. Biomass and net primary production of Quercus mongolica stands in Pyungchang and Jecheon areas. Journal of Korean Forest Society 95(3): 309-315.
  11. Lee, K.-J. and Mun, H.-T. 2005. Organic carbon distribution in an oak forest. Journal of Ecology and Field Biology 28: 265-270. https://doi.org/10.5141/JEFB.2005.28.5.265
  12. Lee, K.J. and Park, I.H. 1987. Primary production and nutrients distribution in 22-year-old Pinus koraiensis and Quercus mongolica stands in Kwangju. Journal of Korean Forest Energy Society 7: 11-21.
  13. Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichsteins, M., Papale, D., Piao, S.L., Schulze, E.D., Wingate, L., Matteucci, G., Aragao, L.E.O.C., Aubinet, M., Beers, C., Bernhofer, C., Black, G.K., Bonal, D., Bonnefond, J.M., Chambers, J., Ciais, P., Cook, B., Davis, K.S., Dolman, A.J., Gielen, B., Goulden, M., Granier, A., Grelle, A., Griffis, T., Grunwald, T., Guidolotti, G., Hanson, P., Harding, R., Hollinger, D.Y., Hutyra, L.R., Kolari, P., Kruijt, B., Kutsch, W.L., Lagergren, F., Laurila, T., Law, B., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateu, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J.W., Nikinmaa, E., Ollinger, S.V., Pita, G., Rebmann, C., Roupsard, O, Saigusa, N., Sanz, M.J., Seufert, G., Sierra, C., Smith, M.-L., Tang, J., Valentini, R., Vesala, T. and Janssens, I.A. 2007. $CO_{2}$ balance of boreal, temperate and tropical forests derived from a global database. Global Change Biology 13: 2509-2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x
  14. Luyssaert, S., Ciais, P., Piao, S.L., Schulze, E.D., Jung, M., Zaehle, S., Schelhaas, M.J., Reichstein, M., Churkina, G., Papale, D., Abril, G., Beer, C., Grace, J., Loustau, D., Matteucci, G., Magnani, F., Nabuurs, G.J., Verbeeck, H., Sulkava, M., Van Der Werf, G.R., Janssens, I.A. and members of the CARBOEUROPE-IP Synthesis Team. 2010. The European carbon balance. Part 3: forests. Global Change Biology 16: 1429-1450. https://doi.org/10.1111/j.1365-2486.2009.02056.x
  15. Noh, N.J., Son, Y., Kim, R.H., Seo, K.W., Koo, J.W., Park, I.H., Lee, K.H. and Son, Y.M. 2007. Biomass accumulations and the distribution of nitrogen and phosphorus within three Quercus acutissima stands in central Korea. Journal of Plant Biology 50: 461-466. https://doi.org/10.1007/BF03030683
  16. Park, G.-S. 1999. Aboveground and soil carbon storages in Quercus mongolica and Quercus variabilis natural forest ecosystems in Chungju. Journal of Korean Forest Society 88(1): 93-100.
  17. Park, G.-S. 2003. Biomass and net primary production of Quercus mongolica stands in Kwangyang, Pyungchang, and Youngdong areas. Journal of Korean Forest Society 92(6): 567-574.
  18. Park, G.-S. and Lee, S.-W. 2001. Biomass and net primary production of Quercus variabilis natural forest ecosystems in Gongju, Pohang, and Yangyang areas. Journal of Korean Forest Society 90(6): 692-698.
  19. Park, G.-S. and Lee, S.-W. 2002. Biomass and net primary production of Quercus serrata natural stands in Kwangyang, Muju, and Pohang areas. Journal of Korean Forest Society 91(6): 714-721.
  20. Park, I.H., Kim, D.-Y., Son, Y., Yi, M.-J., Jin, H.-O and Choi, Y.-H. 2005b. Biomass and net production of a natural Quercus mongolica forest in Namsan, Seoul. Korean Society of Environment and Ecology 19: 299-304.
  21. Park, I.H., Lee, D.K., Lee, K.J. and Moon, G.S. 1996. Growth, biomass and net production of Quercus species (1)-With reference to natural stands of Quercus variabilis, Q. acutissima, Q. dentata, and Q. mongolica in Kwangju, Kyonggi-do. Journal of Korean Forest Society 85(1): 76-83.
  22. Park, I.H. and Moon, G.S. 1994. Biomass, net production and biomass estimation equations in some natural Quercus forests. Journal of Korean Forest Society 83(2): 246-253.
  23. Park, I.H., Seo, Y.K., Kim, D.Y., Son, Y., Yi, M.J. and Jin, H.O. 2003. Biomass and net production of a Quercus mongolica stand and a Quercus variabilis stand in Chuncheon, Kangwon-do. Journal of Korean Forest Society 92(1): 52-57.
  24. Park, I.H., Son, Y., Kim, D.Y., Jin, H.O., Yi, M.J., Kim, R.H. and Hwang, J.O. 2005a. Biomass and production of a naturally regenerated oak forest in southern Korea. Ecological Research 20: 227-231. https://doi.org/10.1007/s11284-004-0021-x
  25. Pregitzer, K.S. and Euskirchen, E.S. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology 10: 2052-2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x
  26. Song, C.Y. and Lee, S.W. 1996. Biomass and net primary production in natural forests of Quercus mongolica and Quercus variabilis. Journal of Korean Forest Society 85(3): 443-452.
  27. Song, C.-Y., Chang, K.S., Park, K.S. and Lee, S.W. 1997. Analysis of carbon fixation in natural forests of Quercus mongolica and Quercus variabilis. Journal of Korean Forest Society 86(1): 35-45.
  28. Son, Y., Kim, D.Y., Park, I.H., Yi, M.J. and Jin, H.O. 2007. Production and nutrient cycling of oak forests in Korea: A case study of Quercus mongolica and Q. variabilis stands. Kangwon National University Press. Chuncheon, Korea. pp. 51-149.
  29. Son, Y., Park, I.H., Jin, H.O., Yi, M.J., Kim, D.Y., Kim, R.H. and Hwang, J.O. 2004a. Biomass and nutrient cycling of natural oak forests in Korea. pp. 217-232. In: Hong, S.K., Lee, J.A., Ihm, B.S., Farina, A., Son, Y., Kim, E.S. and Choe, J.C. (Ed.), Ecological Issues in a Changing World – Status, Response and Strategy. Kluwer Publishing, Dordrecht.
  30. Son, Y., Park, I.H., Yi, M.J., Jin, H.O., Kim, D.Y., Kim, R.H. and Hwang, J.O. 2004b. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecological Research 19: 21-28. https://doi.org/10.1111/j.1440-1703.2003.00617.x
  31. Woodwell, G.M. and Whittaker, R.H. 1968. Primary production in terrestrial ecosystems. American Zoologist 8: 19-30. https://doi.org/10.1093/icb/8.1.19
  32. Yi, M.-J. 2003. Soil $CO_{2}$ evolution in Quercus variabilis and Quercus mongolica forests in Chunchon, Kangwon Province. Journal of Korean Forest Society 92(3): 263-269.