Rainfall Pattern Regulating Surface Erosion and Its Effect on Variation in Sediment Yield in Post-wildfire Area

산불피해지에 있어서 강우패턴에 따른 침식토사량의 변화

  • Seo, Jung-Il (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Chun, Kun-Woo (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Suk-Woo (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Min-Sik (Korean Association of Soil and Water Conservation)
  • 서정일 (강원대학교 산림환경과학대학) ;
  • 전근우 (강원대학교 산림환경과학대학) ;
  • 김석우 (강원대학교 산림환경과학대학) ;
  • 김민식 ((특)사방협회)
  • Received : 2010.04.23
  • Accepted : 2010.06.14
  • Published : 2010.08.30

Abstract

To examine 1) rainfall pattern (i.e., type and intensity) regulating surface erosion on hillslopes in postwildfire area and 2) its effect on variation in sediment yield along the gradient of severity wildfire regimes and elapsed years, we surveyed the amount of sediment yield with respect to daily or net-effective rainfall in 9 plots in eastern coastal region, Republic of Korea. Before field investigation, all plots classified into three groups: low-, mixed- and high-severity wildfire regimes (3 plots in each group). We found that, with decreasing wildfire regimes and increasing elapsed years, the rainfall type regulating surface erosion changed from daily rainfall to net-effective rainfall (considering rainfall continuity) and its intensity increased continuously. In general, wildfires can destroy the stabilized forest floors, and thus rainfall interception by vegetation and litter layer should be reduced. Wildfires can also decrease soil pores in forest floors, and thus infiltration rates of soil are reduced. These two processes lead to frequent occurrence of overland flows required to surface erosion, and sediment yields in post-wildfire areas should increase linearly with increasing rainfall events. With the decreasing severity wildfire regimes and the increasing elapsed years, these processes should be stabilized, and therefore their sediment yields also decreased. Our findings on variations in sediment yields caused by the wildfire regimes and the elapsed years suggest understanding of hydrogeomorphic and ecologic diversities in post-wildfire areas, and these should be carefully examined for both watershed management and disaster prevention.

산불피해지의 급경사면에 있어서 지표토사의 침식에 영향을 미치는 강우의 형태와 강도를 산불의 피해강도 및 경과년수별로 파악하고, 그에 따른 침식토사량의 변화와 그 원인을 해석하기 위해 2000년도에 발생한 산불피해지 가운데 강원도 삼척시 인근지역을 대상으로 저 중 고강도산불피해를 입은 산림에 각각 3개소씩, 총 9개의 조사구를 선정하여 침식토사량을 측정하였다. 그 결과, 산불피해의 강도가 감소함에 따라, 그리고 산불발생 후의 경과년수가 증가함에 따라 지표토양의 침식에 영향을 미치는 강우형태는 일강우량에서 실효우량으로 변화하였으며, 토양침식에 영향을 미치는 강우강도는 점차 증가하는 것으로 나타났다. 산불이 발생하게 되면 식생에 의한 강우차단이 저감될 뿐만 아니라 토양공극이 감소되어 침투능 역시 저하되며, 이러한 유수의 표면유출에 관여하는 물리적 생태학적 조건은 산불피해의 강도 및 경과년수에 따라 다양화된다. 이러한 현상은 산불피해지의 토양침식에 직접적인 영향을 미쳐 산불피해의 강도가 감소함에 따라, 그리고 산불발생 후의 경과년수가 증가함에 따라 침식토사량은 경감되었으며, 그 증가추세 역시 감소되는 것으로 나타났다. 따라서 산불피해지의 다양한 물리적 생태학적 조건을 고려한 종합적인 복원 및 관리방안의 수립이 절실히 요구된다.

Keywords

References

  1. 동해안산불피해지 공동조사단. 2000a. 산불피해지의 건전한 자연생태계 복원 및 항구적인 산림복구계획 수립을 위한 동해안 산불지역 정밀조사 보고서 I. 동해안산불피해지 공동조사단. pp. 533.
  2. 동해안산불피해지 공동조사단. 2000b. 산불피해지의 건전한 자연생태계 복원 및 항구적인 산림복구계획 수립을 위한 동해안 산불지역 정밀조사 보고서 II. 동해안산불피해지 공동조사단. pp. 311.
  3. 신승숙, 박상덕, 조재웅, 이규송. 2008. 양양 산불지역 지표유출 및 토양침식에 대한 식생회복의 영향. 대한토목학회논문집 28: 393-403.
  4. 우보명, 권태호. 1983. 황폐산지에서의 산불이 삼림식생 및 토양에 미치는 영향에 관한 연구 (I): 관악산 뱀골계곡에서의 초기영향. 한국임학회지 62: 43-52.
  5. 이창우, 이천용, 김재현, 윤호중, 최 경. 2004. 고성 산불피해임지의 토사유출 특성. 한국임학회지 93: 198-204.
  6. 이창우, 윤호중, 우충식. 2009. Tank Model을 이용한 산지토사재해 경계피난 기준우량 산정법 개발 및 검토. 한국임학회지 98: 272-278.
  7. 전근우, 서문원, 안영상, 서정일, 김석우, 양동윤, 新谷融. 2002. 저댐군의 수리모형실험. 2002년도 한국임학회 학술연구 발표논문집: 152-154.
  8. 전근우, 김석우, 서정일, 中村太士, 新谷融. 2004. 저댐군의 수리모형실험(III): 토사유입이 하상변동에 미치는 영향. 2004년도 한국임학회 학술연구 발표논문집: 355-357.
  9. 高橋 透, 松岡充宏, 尾克美, 荒木義則, 古川浩平, 水山高久. 2000. 地形特性を考慮した土石流警戒避難基準雨量の設定. 砂防學會誌 53: 35-46.
  10. 恩田裕一, 村眞貴, 田中高志, 笹木浩二, 水山高久, 內田太郞, 田井中治, 田中秀夫. 2006. 降雨流出特性を用いた土石流警戒避難基準の策定法の檢討. 砂防學會誌 58: 13-17.
  11. 日本獨立行政法人防災科學技術究所. 2002. MPレ一ダ雨量による土砂災害危險域の推定(1). http://lapsus.bosai.go.jp/lapsus/dosha_map/sgm1.htm (2002. 10. 1)
  12. 赤沼準一, 小山內信智, 安田勇次, 嶋 大尙. 2002. 平成11年9月15日重信川流域土砂災害における砂防施設效果. 砂防學會誌 55: 43-51.
  13. 竹本大昭, 梶間厚邦, 倉本和正, 本庄 勉, 古川浩平. 2004.ニュ一ラルネットワ一クによる地下水予測モデルを用いた地すべりの警戒避難基準の設定と對策工效果の評価に關する硏究. 砂防學會誌 56: 3-14.
  14. 中井眞司. 2009. 地域ごとの降雨特性に着目した土砂移動現象の發生予測に關する硏究. 廣島大學博士論文 pp. 172.
  15. Agee, J.K. 1993. Fire Ecology of Pacific Northwest Forests. Island Press. Washington DC, U.S.A. pp. 493.
  16. Allan, J.D. 1995. Stream Ecology: Structure and Function of Running Waters. 1st ed. Chapman & Hall. London, U.K. pp. 388.
  17. Anderson, M.G. and Burt, T.P. 1990. Process studies in hillslope hydrology: an overview. pp. 1-8. In: M.G. Anderson and T.P. Burt, ed. Process Studies in Hillslope Hydrology. John Wiley & Sones Ltd. Chichester, U.K.
  18. Bautista, S., Bellot, J. and Vallejo, V.R. 1996. Mulching treatment for postfire soil conservation in a semiarid ecosystem. Arid Land Research and Management 10: 235-242.
  19. Buchanan, J.R., Yoder, D.C., Denton, H.P. and Smoot, J.L. 2002. Wood chips as a soil cover for construction sites with steep slopes. Applied Engineering in Agriculture 18: 679-683.
  20. Burnham, K.P. and Anderson, D.R. 2002. Model Selection and Multimodel Inference: A Practical Information- Theoretic Approach, 2nd ed. Springer-Verlag, New York, U.S.A. pp. 488.
  21. Choung, Y., Lee, B., Cho, J., Lee, K., Jang, I., Kim, S., Hong, S., Jung, H. and Choung, H. 2004. Forest responses to the large-scale east cost fires in Korea. Ecological Research 19: 43-54. https://doi.org/10.1111/j.1440-1703.2003.00607.x
  22. Chun, K.W., Seo, J.I., Yeom, K.J., Cha, D.S., Kim, K.N., Inoue, S. and Ezaki, T. 2003. Variations of suspended solid and sediment yield in forest fire area: effects of coverage and afforestation. Journal of Rainwater Catchment Systems 9: 13-17. https://doi.org/10.7132/jrcsa.KJ00000795219
  23. Crawley, M.J. 2005. Statistics: An Introduction Using R, 1st ed. John Wiley & Sons Ltd, Chichester, U.K. pp. 327.
  24. Gomi, T., Sidle, R.C. and Richardson, J.S. 2002. Understanding processes and downstream linkages of headwater systems. BioScience 52: 905-916. https://doi.org/10.1641/0006-3568(2002)052[0905:UPADLO]2.0.CO;2
  25. Harmon, M.E., Franklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack, K. Jr. and Cummins, K.W. 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133-302. https://doi.org/10.1016/S0065-2504(08)60121-X
  26. Helvey, J.D. 1980. Effects of a north-central Washington wildfire on runoff and sediment production. Journal of the American Water Resources Association 16: 627-634. https://doi.org/10.1111/j.1752-1688.1980.tb02441.x
  27. Johansen, M.P., Hakonson, T.E. and Breshears, D.D. 2001. Post-fire runoff and erosion from rainfall simulation: contrasting forests with shrublands and grasslands. Hydrological Processes 15: 2953-2965. https://doi.org/10.1002/hyp.384
  28. Johnson, M.G. and Beschta, R.L. 1980. Logging, infiltration capacity, and surface erodibility in western Oregon. Journal of Forestry 78: 334-337.
  29. Keller, E.A. and Swanson, F.J. 1979. Effects of large organic material on channel form and fluvial processes. Earth Surface Processes and Landforms 4: 361-380. https://doi.org/10.1002/esp.3290040406
  30. Kim, C.G., Shin, K.I., Joo, K.Y., Lee, K.S., Shin, S.S. and Choung, Y.S. 2008. Effects of soil conservation measures in a partially vegetated area after forest fires. Science of the Total Environment 399: 158-164. https://doi.org/10.1016/j.scitotenv.2008.03.034
  31. Knighton, A.D. 1998. Fluvial Forms and Processes: A New Perspective. 1st ed. Arnold, London, U.K. pp. 383.
  32. Martin, D.A. and Moody, J.A. 2001. Comparison of soil infiltration rates in burned and unburned mountainous watersheds. Hydrological Processes 15: 2893-2903. https://doi.org/10.1002/hyp.380
  33. Meyer, G.A. and Wells, S.G. 1997. Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. Journal of Sedimentary Research 67: 776-791.
  34. Nakamura, F. and Swanson, F.J. 2003. Dynamics of wood in rivers in the context of ecological disturbance. pp. 279- 297. In: S.V. Gregory, K.L. Boyer and A.M. Gurnell, ed. The Ecology and Management of Wood in World Rivers (American Fisheries Society Symposium 37). American Fisheries Society. Bethesda, MD, U.S.A.
  35. Nakamura, F., Swanson, F.J. and Wondzell, S.M. 2000. Disturbance regimes of stream and riparian systems: a disturbance-cascade perspective. Hydrological Processes 14: 2849-2860. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2849::AID-HYP123>3.0.CO;2-X
  36. Pinaya, I., Sato, B., Arias, M. and Díaz-Fierros, F. 2000. Revegetation of burnt areas: relative effectiveness of native and commercial seed mixtures. Land Degradation and Development 11: 93-98. https://doi.org/10.1002/(SICI)1099-145X(200001/02)11:1<93::AID-LDR380>3.0.CO;2-U
  37. Seo, J.I. and Nakamura, F. 2009. Scale-dependent controls upon the fluvial export of large wood from river catchments. Earth Surface Processes and Landforms 34: 786-800. DOI 10.1002/esp.1765.
  38. Swanson, F.J. 1981. Fire and geomorphic processes. pp. 401-420. In: Proceedings of the Conference on Fire Regimes and Ecosystem Properties. USDA Forest Service Publication. Honolulu, Hawaii, U.S.A.
  39. Wondzell, S.M. and King, J.G. 2003. Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions. Forest Ecology and Management 178: 75-87. https://doi.org/10.1016/S0378-1127(03)00054-9