Somatic Embryo Germination and the Related Biochemical Changes of Liriodendron tulipifera by Bioreactor Immersion Time

생물반응기 내 침지시간에 따른 백합나무 체세포배 발아 및 생화학적 변화

  • An, Chan-Hoon (Department of Forestry, Graduate School, Kangwon National University) ;
  • Yi, Jae-Seon (College of Forest and Environment Sciences, Kangwon National University) ;
  • Kim, Yong-Wook (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Moon, Heung-Kyu (Division of Forest Biotechnology, Korea Forest Research Institute)
  • 안찬훈 (강원대학교 대학원 임학과) ;
  • 이재선 (강원대학교 산림환경과학대학) ;
  • 김용욱 (국립산림과학원 산림생명공학과) ;
  • 문흥규 (국립산림과학원 산림생명공학과)
  • Received : 2010.04.02
  • Accepted : 2010.05.17
  • Published : 2010.06.30

Abstract

To determine physical and physiological factors for Liriodendron tulipifera L. somatic embryo germination, temporary immersion bioreactor (TIB) system was investigated. It was designed to immerse liquid media with plantlets so that it was able to adjust the immersion time. Immersion of 120 minutes every 4 hours and 60 minutes every 4 hours was found to be effective in germination (91.64%, 85.67%, respectively). However, hyperhydricity of the plantlets was higher in short immersion time (15 minutes every 6 hours) and long immersion time (120 minutes every 4 hours) (51.61%, 34.28%, respectively). Immersion of 60 minutes every 4 hours showed the lowest hyperhydric plantlets, and also it showed the lowest activities of abscisic acid (ABA), superoxide dismutase (SOD), and catalase. The overall results implied that immersion time of media affected germination and growth of somatic embryo, and it was able to make use of germination and growth of L. tulipifera somatic embryos.

본 연구는 백합나무의 효율적인 기내번식법 개발을 위하여 temporary immersion 방식의 생물반응기(TIB)를 이용한 체세포배 발아에 미치는 몇 가지 요인을 구명하고자 실시하였다. 사용된 생물반응기는 간헐적으로 배지가 식물체에 접촉되도록 설계되어 배지의 침지시간을 임의로 조절하였다. 본 방식을 통한 백합나무 체세포배 발아율은 배지의 침지시간이 상대적으로 길었던 매 4시간 마다 120분씩 침지시킨 처리구와 매 4시간 마다 60분씩 침지시킨 처리구에서 높게 나타났다(각각 91.64%, 85.67%). 하지만 식물체의 과수화 비율은 침지시간이 상대적으로 짧았던 매 6시간 마다 15분씩 침지시킨 처리구와 상대적으로 길었던 매 4시간 마다 120분씩 침지시킨 처리구에서 높게 나타났다(각각 51.61%, 34.28%). 매 4시간 마다 60분씩 배지를 침지시킨 처리구에서 과수화된 식물체가 가장 적게 나타났으며, abscisic acid (ABA), superoxide dismutase (SOD) 및 catalase의 함량이 가장 적은 것으로 나타났다. 본 실험에서 생물반응기내 배지 침지 시간은 체세포배 발아시 스트레스 요소로서 작용하여 발아 및 식물체 생장의 차이를 보여주었다. 이상의 결과는 TIB방식의 생물반응기를 통해 백합나무의 효율적인 발아가 가능함을 보여주었다.

Keywords

References

  1. 유근옥, 김외정, 김인식, 최형순, 이동흡, 김용욱. 2008. 백합나무(Liriodendron tulipifera L.) 생장특성과 이용기술. 국립산림과학원 연구자료 제320호, pp. 22.
  2. Albarran, J., Bertrand, B., Lartaud, M. and Etienne, H. 2005. Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffee arabica) somatic embryos. Plant Cell, Tissue and Organ Culture 81(1): 27-36. https://doi.org/10.1007/s11240-004-2618-8
  3. An, J.K., Choi, Y.W., Son, B.G. and Cho, D. 1997. Introduction of plant hormones. Miryang National University Press pp. 149-169.
  4. Asada, K., Takahashi, M. and Nagate, M. 1974. Assay and inhibitors of spinach superoxide dismutase. Agricultural and Biological Chemistry 38: 471-473. https://doi.org/10.1271/bbb1961.38.471
  5. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology. 50: 601-639. https://doi.org/10.1146/annurev.arplant.50.1.601
  6. Beauchamp, C. and Fridovichi, I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44(1): 276-297. https://doi.org/10.1016/0003-2697(71)90370-8
  7. Bowler, C., Montagu, M.V. and Inze, D. 1992 Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  8. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  9. Etienne, H. and Berthouly, M. 2002. Temporary immersion system in plant micropropagation. Plant Cell, Tissue and Organ Culture 69(1): 215-231.
  10. Fossati, P., Prencipe, L. and Berti, G. 1980. Use of 3,5- dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clinical Chemistry 26: 227-231.
  11. Foyer, C.H., Lelandais, M. and Kunert, K.J. 1994. Photooxidative stress in plants. Physiologia Plantarum 92(4): 696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  12. Frey, A., Boutin, J.P., Sotta, B., Mercier, R. and Annie, M.P. 2006. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds. Planta 224: 622-632. https://doi.org/10.1007/s00425-006-0231-2
  13. Han, S.H., Lee, J.C., Oh, C.Y., Kim, J.K. and Kim, P.G. 2006. Seasonal changes of pigment content and antioxidant capacity in leaves of Alnus firmaat polluted area. Korean Journal of Agricultural and Forest Meteorology 8(2): 107-115.
  14. Heath, R.L., Parker L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stiochiometry of fatty acid peroxidation. Archives of Biochemistry and biophysics 125: 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  15. Jiang, Y. and Zhang, J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell and Physiology 42(11): 1265-1273. https://doi.org/10.1093/pcp/pce162
  16. Jiang, M. and Zhang, J. 2002. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radical Research 36(9): 1001-1015. https://doi.org/10.1080/1071576021000006563
  17. Jimenez, V.M. 2001. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Revista Brasileira de Fisiologia Vegetal 13(2): 196-223. https://doi.org/10.1590/S0103-31312001000200008
  18. Krueger S., Robacker C., Simonton W. 1991. Culture of Amelanchier$\times$grandiflora in a programm able micropropagation apparatus. Plant Cell, Tissue and Organ Culture 27(2): 219-226. https://doi.org/10.1007/BF00041293
  19. Larson R.A. 1988. The antioxidants of higher plant. Phytochemistry 27: 969-978. https://doi.org/10.1016/0031-9422(88)80254-1
  20. Lee, J.S., Moon, H.K. and Kim, Y.W. 2003. Mass propagation of Liriodendron tulipifera L. via somatic embryogenesis. Korean Journal of Plant Biotechnology 30(4): 359-363. https://doi.org/10.5010/JPB.2003.30.4.359
  21. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R, Packer L. (eds.) Methods Enzymol., vol 148. Academic Press Inc., NewYork. pp. 350-382.
  22. Litvay, J.D., Johnson, M.A., Verma, D., Einspahr, D. and Weyrauch, K. 1981. Conifer suspension culture medium development using analytical data from developing needs. IPC Technical paper series no. 115. pp. 1-7.
  23. Merkle, S.A. and Sommer, H.E. 1986. Somatic embryogenesis in tiussue cultures of Liriodendron tulipifera. Canada Journal of Forest Research 16: 420-422. https://doi.org/10.1139/x86-077
  24. Merkle, S.A., Wiecko, A.T. Sotak, R.J. and Sommer, H.E. 1990. Maturation and conversion of Liriodendron tulipifera somatic embryos. In Vitro Cellular and Development Biology 26(11): 1086-1093. https://doi.org/10.1007/BF02624445
  25. Merkle, S.A., Hoey, M.T., Watson-Pauley, B.A. and Schlarbaum, S.E. 1993. Propagation of Liriodendron hybrids via somatic embryogenesis. Plant Cell Tissue and Organ Culture 34(2): 191-198. https://doi.org/10.1007/BF00036101
  26. Nitsch, J.P. and Nitsch, C. 1969. Haploid plants from pollen grans. Science 163: 85-87. https://doi.org/10.1126/science.163.3862.85
  27. Paek, K.Y., Hahn, E.J. and Son, S.H. 2001. Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cellular and Developmental Biology.-Plant 37: 149-157. https://doi.org/10.1007/s11627-001-0027-9
  28. Son, S.G., Moon, H.K., Kim, Y.W. and Kim, J.A. 2005. Effect of mother trees and dark culture condition affecting on somatic embryogenesis of Liriodendron tulipifera L. Korean Journal of Forest Society 94(1): 39-44.
  29. Steward, F.C., Mapes, M.O. and Mears, K. 1958. Growth and organized development of cultured cells. II: Organization in cultures grown from freely suspended cells. American Journal of Botany 45(10): 705-708. https://doi.org/10.2307/2439728
  30. Teisson, C. and Alvard, D. 1995. A new concept of plant in vitro cultivation liquid medium: Temporary immersion. In: Terzi M.etal. (eds.) Current Issues in Plant Molecular and Cellular Biology. Kluwer Academic Publishers, Dordrecht, The Nether lands, pp. 105-110.
  31. Teisson, C., Alvard, D., Lartaud, M., Etienne, H., Berthouly, M., Escalona, M. and Lorenzo, J.C. 1999. Temporary immersion for plant tissue culture. In: Plant Biotechnology and in vitro Biology in the 21st Century. Proceeding. of the th Intl Congress of Plant Cell, Tissue and Organ Culture, Section H: Novel micropropagation methods. Jerusalem. pp. 629-632.
  32. Valdes, A.E., Fernandez, B. and Centeno, M.L. 2003. Alterations in endogeneous levels of cytokinins following grafting of Pinus radiata support ratio of cytokinins as an index of ageing and vigour. Journal of Plant Physiology 160(11): 1407-1410. https://doi.org/10.1078/0176-1617-00992
  33. van Staden J., Zozimalova E. and George E.F. 2008. Plant propagation by tissue culture 3rd edition; Plant growth regulations III: Cytokinins, their analogues and antagonists, George E.F., (eds.). Springer. pp. 115-178.
  34. Vendrame, W.A., Holliday, C.P., Montello, P.M., Smith, D.R. and Merkle S.A. 2001. Cryopreservation of yellowpoplar and sweetgum embryogenic cultures. New Forests 21: 283-292. https://doi.org/10.1023/A:1012237606373
  35. Zhang, J. and Kirkham, M.B. 1996. Antioxidant responses to drought in sunflower and sorghum seedlings. New Physioloist 132(3): 361-373. https://doi.org/10.1111/j.1469-8137.1996.tb01856.x
  36. Zhao, D., Reddy, K.R., Kakani, V.G. and Reddy, V.R., 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis and hyperspectral reflectance properties of sorghum. European Journal fo Agronomy 22(4): 391-403. https://doi.org/10.1016/j.eja.2004.06.005