소나무 수관 부위별 연료량 추정식 개발 및 수관연료밀도 분석

Allometric Equations of Crown Fuel Biomass and Analysis of Crown Bulk Density for Pinus densiflora

  • 이병두 (국립산림과학원 산림방재연구과) ;
  • 원명수 (국립산림과학원 산림방재연구과) ;
  • 김선영 (국립산림과학원 산림방재연구과) ;
  • 윤석희 (국립산림과학원 산림방재연구과) ;
  • 이명보 (국립산림과학원 산림방재연구과)
  • Lee, Byung-Doo (Division of forest Disaster Management, Korea Forest Research Institute) ;
  • Won, Myoung-Soo (Division of forest Disaster Management, Korea Forest Research Institute) ;
  • Kim, Seon-Young (Division of forest Disaster Management, Korea Forest Research Institute) ;
  • Yoon, Suk-Hee (Division of forest Disaster Management, Korea Forest Research Institute) ;
  • Lee, Myung-Bo (Division of forest Disaster Management, Korea Forest Research Institute)
  • 투고 : 2010.03.22
  • 심사 : 2010.04.30
  • 발행 : 2010.06.30

초록

수관화 위험성 평가에 필요한 소나무 수관층 연료특성을 분석하기 위해 수관 부위별로 연료량을 추정할 수 있는 상대생장식을 개발하고, 수관연료밀도를 분석하였다. 이를 위해 대구 팔공산의 소나무 임분을 대상으로 10본의 소나무를 벌채하고, 수간, 가지, 잎 부분의 고사여부와 가지의 굵기 별로 구분하여 무게를 측정하였다. 상대생장식은 흉고직경(D) 또는 흉고직경과 수고(H)를 이용하는 회귀식을 이용하여 추정하였다. 평균적으로 추정식 lnWt=${\alpha}+{\beta}lnD+{\gamma}lnH$의 결정계수가 가장 높고(${R^2}_{adj}$=0.835-0.996) 표준추정오차가 가장 낮았지만(SEE=0.074-0.638), 잎과 작은 가지 항목에서는 추정식들간 결정계수 및 표준추정오차의 차이가 미미하였다. 각 부위별 연료량을 수관체적으로 나눈 수관연료 밀도는 잎만을 고려했을 때 0.067 kg/$m^3$, 잎과 직경이 0.5 cm 이하인 가지까지 포함했을 때 0.097 kg/$m^3$로 나타났다. 흉고직경이 증가함에도 잎과 잔가지 부위의 수관연료밀도 증가폭은 미미하였다.

To analyze the characteristics of canopy fuel in Pinus densiflora stand, which is essential to assess the crown fire hazard, allometric equations for estimation of crown fuel biomass were developed by subjectively categorized crown fuel component and crown bulk density was analyzed by available fuel component categories. Ten trees were destructively sampled at Pinus densiflora stand in Mt. Palgong in Daegu and their crown fuels were weighed separately for each fuel category by size classes and by living and dead. Regression equations that estimate crown fuel load by diameter at breast height(D) or additional total height(H) were derived. The adjusted coefficient of determination values were the highest (${R^2}_{adj}$=0.835-0.996) and standard error of estimate were the lowest (SEE=0.074-0.638) in the allometric equation lnWt=${\alpha}+{\beta}lnD+{\gamma}lnH$ in average. However, in needles and small branches categories, the differences in ${R^2}_{adj}$ and SEE between equations were not significant. Crown bulk density (CBD), which was calculated by crown fuel load divided by crown volume, was 0.067 kg/$m^3$ in average when only needles were considered as available crown fuel and 0.097 kg/$m^3$ when needles and branches (0-0.5 cm diameter) were considered. The increments of CBD of needles and small branches were little even when diameter at breast height increased.

키워드

참고문헌

  1. 박인협, 김동엽, 손요환, 이명종, 진현오, 최윤오. 2005. 서울 남산지역 신갈나무 천연림의 물질생산. 한국환경생태학회지 19(3): 299-304.
  2. 박인협, 김준선. 1989. 한국산 4개 지역별 소나무천연림의 물질 현존량 추정식에 관한 연구. 한국임학회지 78(3):323-330.
  3. 박인협, 이석면. 1990. 한국산 4개 지역별 소나무 천연림의 물질생산에 관한 연구. 한국임학회지 79(2): 196-204.
  4. 산림청. 2009. 임업통계연보. 제39권.
  5. 신만용, 정동준, 이태희. 1999. 우리나라 주요 수종별 수관형태식 개발에 관한 연구. 한국산림측정학회지 2(1):3-11.
  6. 이경학, 손영모, 노대균, 권순덕. 2002. 우리나라 주요 6 수종의 수간중량 추정식. 한국임학회지 91(2): 206-212.
  7. 이병두, 김형호, 장광민, 정주상, 이명보, 이시영. 2006. 2005년 양양산불 피해 소나무림의 연소량 추정. 한국환경생태학회지 20(2): 267-273.
  8. 조현길, 안태원. 2000. 자연생태계 수목의 생장에 따른 탄소저장 및 흡수량 지표. 한국환경생태학회지 14(3):175-182.
  9. Brown, J.K. 1978. Weight and density of crowns of Rocky Mountain conifers. Research Paper INT-197, U.S. Department of Agriculture, Forest Service. pp. 56.
  10. Brown, J.K. and Bradshaw, L.S. 1994. Comparisons of particulate emissions and smoke impacts from presettlement, full suppression and Prescribed Natural Fire periods in the Selway-Bitterroot Wilderness. International Journal of Wildland Fire 4(3): 143-155. https://doi.org/10.1071/WF9940143
  11. Call, P.T. and Albini, F.A. 1997. Aerial and surface fuel consumption in crown fires. International Journal of Wildland Fire 7(3): 259-264. https://doi.org/10.1071/WF9970259
  12. Cruz, M. G., Alexander, M.E. and Wakimoto, R.H. 2003. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. International Journal of Wildland Fire 12: 39-50. https://doi.org/10.1071/WF02024
  13. Keane, R.E., Reinhardt, E.D., Scott, J., Gray, K. and Reardon, J. 2005. Estimating forest canopy bulk density using six indirect methods. Canadian Journal of Forest Research. 35: 724-739. https://doi.org/10.1139/x04-213
  14. Kucuk, O., Saglam, B. and Bilgili, E. 2007. Canopy Fuel Characteristics and Fuel Load in Young Black Pine Trees. Biotechnology and Biotechnological Equipment 21(2): 235-240.
  15. Mitsopoulos, I.D. and Dimitrakopoulos. A.P. 2007. Allometric equations for crown fuel biomass of Aleppo pine (Pinus halepensis MIll.) in Greece. International Journal of Wildland Fire 16: 642-647. https://doi.org/10.1071/WF06038
  16. Reinhardt, E.D., Keane, R.E., Scott, J.H. and Brown, J.K. 2000. Quantification of canopy fuels in conifer forests: Assessing crown fuel characteristics using destructive and non-destructive methods. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Lab, Missoula, MT.
  17. Sando, R.W. and Wick, C.H. 1972. A method of evaluating crown fuels in forest stands. Research Paper RP-NC- 84, U.S. Department of Agriculture, Forest Service, North Central Forest Experimental Station, St. Paul, pp. 10.
  18. Scott, J.H. and Reinhardt, E.D. 2001. Assessing crown fire potential by linking models of surface nad crown fire behavior. Research Paper. RMRS-RP-29, U.S. Department of Agriculture, Forest Service. pp. 59.
  19. Shin, J.H. 1989. Crown Architecture and Differentiation in Tree Classes, Their Growth Strategies and Growth Model in Pinus koraienesis S. et Z. Plantations. Ph. D. thesis, Seoul National Univ., Korea, pp. 138.
  20. Shinozaki, K., Yoda, K., Hozumi, K. and Kira, T. 1964. A quantitatie analysis of plant form-the pipe model theory. I. Basic analysis. Japanese Journal of Ecology 14: 97-105.