Correlation of Growth Performance with Total Nitrogen, Carbon and Nitrogen Isotope Compositions in the Xylem of Pinus koraiensis

잣나무 생장과 목질부내의 전질소, 탄소 및 질소 동위원소 조성과의 상관관계

  • Lee, Wi-Young (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Park, Eung-Jun (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Han, Sang-Urk (Division of Forest Resources, Korea Forest Research Institute)
  • 이위영 (국립산림과학원 산림생명공학과) ;
  • 박응준 (국립산림과학원 산림생명공학과) ;
  • 한상억 (국립산림과학원 자원육성과)
  • Received : 2010.03.15
  • Accepted : 2010.04.27
  • Published : 2010.06.30

Abstract

In this study, we investigated the relationship of tree-ring growth with total nitrogen content, and stable carbon and nitrogen isotopes from the core samples of Pinus koraiensis (35-year-old). Annual ring width showed significant positive correlations with the ${\delta}^{13}C$ (P=0.003). The total nitrogen content (P=0.024), and the ${\delta}^{13}C$ content was also correlated with total nitrogen content (P=0.038), indicating that the growth of P. koraiensis was stimulated as the contents of both ${\delta}^{13}C$ and total nitrogen were increased. On the other hand, the less the ${\delta}^{15}N$ content and the C/N ratio were, the larger the annual ring width was. Moreover the families with relatively better growth performance contained the higher levels of ${\delta}^{13}C$ in the xylem compared to other families. These results suggest that the ${\delta}^{13}C$ and total nitrogen contents are the important determinants in the growth performance of P. koraiensis.

잣나무 목질부의 전질소 함량, 질소 및 탄소 동위원소비와 생장량과의 관계를 구명하고자 목편을 채취, 목질부의 질소 함량, 질소 및 탄소 동위원소비를 측정하여 목편의 연륜 폭과의 관계를 분석하였다. 목편의 연륜 폭과 ${\delta}^{13}C$ 및 전질소 함량과는 각각 p=0.003, p=0.024로 유의적 정의 상관관계가 있었고, 전질소 함량과 ${\delta}^{13}C$값과도 정의 상관관계(p=0.038)가 있어 목질부의 $^{13}C$량이 높고 또한 전질소 함량이 높을수록 잣나무 생장량도 증가하는 것으로 나타났다. 반면 목질부의 ${\delta}^{15}N$값과 C/N율이 낮을수록 연륜 폭이 증가하는 것으로 나타났다. 잣나무 가계간의 비교에서 생장이 우수한 가계일수록 그 목질부의 ${\delta}^{13}C$값이 큰 것으로 나타나 잣나무의 ${\delta}^{13}C$값이 상대적으로 높으면 생장도 우수한 것으로 추정된다. 이러한 결과로 잣나무 목질부내의 ${\delta}^{13}C$값 및 전질소 함량은 생장량과 밀접한 관계가 있는 인자로 추정된다.

Keywords

References

  1. Barber, V.A., Juday, G.P. and Finney, B.P. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668-673. https://doi.org/10.1038/35015049
  2. Evans J.R. 1989. Photosynthesis and nitrogen relationships in leaves of $C_3$ plants. Oecologia 78: 9-19. https://doi.org/10.1007/BF00377192
  3. Farquhar, G.D., Ehleringer, J.R. and Hubick, K.T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review Plant Physiology and Plant Molecular Biology 40:503-537. https://doi.org/10.1146/annurev.pp.40.060189.002443
  4. Farquhar, G.D., O'Leary, M.H. and Berry, J.A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration of leaves. Australian Journal of Plant Physiology 9: 121-137. https://doi.org/10.1071/PP9820121
  5. Field, C. and Mooney, H.A. 1986. The photosynthesisnitrogen relationship in wild plant. In: Givnish, R. (Ed.), On the Economy of Plant Form and Function. Cambridge University Press. Cambridge. pp. 25-55.
  6. Guy, R.D. and Holowachuk, D.L. 2001. Population differences in stable carbon isotope ratio of Pinus contorta Dougl. ex Loud.: Relationship to environment, climate of origin and growth potential. Canadian Journal of Botany 79: 274-283.
  7. Kwak, J.H., Choi, W.J., Lim, S.S., and Arshad, M.A. 2009. ${\delta}^{13}C$ and ${\delta}^{15}N$, N concentration and Ca-to-Al ratios of forest samples from Pinus densiflora stands in rural and industrial areas. Chemical Geology 264: 385-393. https://doi.org/10.1016/j.chemgeo.2009.04.002
  8. Leavitt, S.W. and Long, A. 1991. Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chemical Geology: Isotope Geoscience section 87: 59-70. https://doi.org/10.1016/0168-9622(91)90033-S
  9. Li Z.H., Leavitt, S.W., Mora, C.I. and Liu, R.M. 2005. Influences of early wood-latewood size and isotope differences on long-term tree-ring ${\delta}^{13}C$ trends. Chemical Geology 216: 191-201. https://doi.org/10.1016/j.chemgeo.2004.11.007
  10. Li, Z.H., Liu, R.M., An, Z.S. and Wu, Z.D. 1996. Climatic implication of seasonal ${\delta}^{13}C$ in tree ring from Huangling of Shaanxi province. Chinese Science Bulletin 41(4): 326-329.
  11. O'Leary M.H. 1988. Carbon isotope in photosynthesis. BioScience. 38: 328-336 https://doi.org/10.2307/1310735
  12. Ogaya, R. and Peñuelas, J. 2008. Changes in leaf ${\delta}^{13}C$ and $d^{15}N$ for three mediterranean tree species in relation to soil water availability. Acta Oecologica 34: 331-338. https://doi.org/10.1016/j.actao.2008.06.005
  13. Olbrich, B.W., Le Roux, D., Poulter, A.G., Bond, W.J. and Stock, W.D. 1993. Variation in water use efficiency and ${\delta}^{13}C$ levels in Eucalyptus grandis clone. Journal of Hydrology 15: 615-633.
  14. Penuelas, J. and Estiarte, M. 1997. Trends in plant carbon concentration and plant demand for N throughout this century. Oecologia 109: 69-73.
  15. Pharis, R.P., Yeh, F.C. and Dancik, B.P. 1991. Superior growth potential in trees: What is its basis, and can it be tested for at an early age ?. Canadian Journal of Forest Research 21: 368-374. https://doi.org/10.1139/x91-045
  16. Prasolova, N.V., Xu, Z.H., Farquhar, G.D., Saffigna, P.G. and Dieters, M.J. 2000. Variation in branchlet ${\delta}^{13}C$ in relation to branchlet nitrogen concentration and growth in 8-yearold hoop pine families (Araucaria cunninghamii) in subtropical Australia. Tree Physiology 20: 1049-1055. https://doi.org/10.1093/treephys/20.15.1049
  17. Prasolova, N.V., Xu, Z.H., Lundkvist, K., Farquhar, G.D., Dieters, M.J., Walker, S. and Saffigna, P.G. 2003. Genetic variation in foliar carbon isotope composition in relation to tree growth and foliar nitrogen concentration in clones of the $F_1$ hybrid between Slash pine and Caribbean pine. Forest Ecology and Management 172: 145-160. https://doi.org/10.1016/S0378-1127(01)00807-6
  18. Swap, R.J., Aranibr, J.N., Dowty, P.R., Gilhooly, W.P.and Macko, S.A. 2004. Natural abundance of ${\delta}^{13}C$ and ${\delta}^{15}N$ in $C_4$ and $C_3$ plants vegetation of southern Africa: Patterns and implications. Global Change of Biology 10: 350-358. https://doi.org/10.1111/j.1365-2486.2003.00702.x
  19. Xu, Z.H., Daffignam P.G., Farquhar, G.D., Simpson, J.A., Haines, R.J., Walker, S., Osborne, D.O. and Guinto, D. 2000. Carbon isotope discrimination and oxygen isotope composition in clones of the $F_1$ hybrid between slash pine and Carribbean pine in relation to tree growth. Tree Physiology 20: 1209-1217. https://doi.org/10.1093/treephys/20.18.1209
  20. Xu, Z.H., Prasolova, N.V., Lundkvist, K., Beadle, C. and Leaman, T. 2003. Genetic variation in branchlet carbon and nitrogen isotope composition and nutrient concentration of 11-year-old hoop pine families in relation to tree growth in subtropical Australia. Forest Ecology and Management 186: 359-371. https://doi.org/10.1016/S0378-1127(03)00304-9
  21. Yi J.S., Song J.H. and Yi J.S. 2007. Estimate of early selection using age-age correlation by stem analysis in Pinus koraiensis. Korean White Pine (Pinus koraiensis) 2: 51-61.
  22. Zhao L., Xiao H., Cheng G., Liu X., Yang Q., Yin L., and Li C. 2009. Correlation between ${\delta}^{13}C$ and ${\delta}^{15}N$ in $C_4$ and $C_3$ plants of natural and artificial sand-binding microhabitats in the Tengger desert of China. Ecological Informatics. ( In press ).
  23. Ziegler, H., and Hertel, H. 2007. Carbon isotope fractionation in species of the torrenticolous families Podostemaceae and Hydrostachyaceae. Flora 202: 647-652. https://doi.org/10.1016/j.flora.2007.06.004