Cause-specific Spatial Point Pattern Analysis of Forest Fire in Korea

우리나라 산불 발생의 원인별 공간적 특성 분석

  • Kwak, Han-Bin (Departmemt of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Woo-Kyun (Departmemt of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Si-Young (Department of Disaster Prevention & Safety Engineering, Kangwon National University) ;
  • Won, Myung-Soo (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Koo, Kyo-Sang (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Lee, Byung-Doo (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Lee, Myung-Bo (Division of Forest Disaster Management, Korea Forest Research Institute)
  • 곽한빈 (고려대학교 환경생태공학과) ;
  • 이우균 (고려대학교 환경생태공학과) ;
  • 이시영 (강원대학교 소방방재학부) ;
  • 원명수 (국립산림과학원 산림방재연구과) ;
  • 구교상 (국립산림과학원 산림방재연구과) ;
  • 이병두 (국립산림과학원 산림방재연구과) ;
  • 이명보 (국립산림과학원 산림방재연구과)
  • Received : 2009.10.19
  • Accepted : 2010.04.07
  • Published : 2010.06.30

Abstract

Forest fire occurrence in Korea is highly related to human activities and its spatial distribution shows a strong spatial dependency with cluster pattern. In this study, we analyzed spatial distribution pattern of forest fire with point pattern analysis considering spatial dependency. Distributional pattern was derived from Ripley's K-function according to causes and distances. Spatially clustered intensity was found out using Kernel intensity estimation. As a result, forest fires in Korea show clustered pattern, although the degrees of clustering for each cause are different. Furthermore, spatial clustering pattern can be classified into two groups in terms of degrees of clustering and distance. The first group shows the national-wide cluster pattern related to the human activity near forests, such as human-induced accidental fire in mountain and field incineration. Another group shows localized cluster pattern which is clustered within a short distance. It is associated with the smoker fire, arson, accidental by children. The range of localized clustering was 30 km. Beyond of this range, the patterns of forest fire became random distribution gradually. Kernel intensity analysis showed that the latter group, which have localized cluster pattern, was occurred in near Seoul with high densed population.

우리나라에서 산불 발생 공간분포는 인간 활동과 큰 관련성이 있기 때문에, 지역별 군집형태의 강한 공간의존성을 갖는다. 본 연구에서는 공간의존성의 개념에 입각하여 점자료 분석법을 통한 산불발생의 공간분포패턴을 분석하였다. Ripley의 K 함수를 이용하여 산불 발생 원인별 공간분포 형태를 파악하였으며, Kernel 함수를 통해 산불발생의 공간적 집중도를 분석하였다. 그 결과 정도는 상이하지만 모든 원인의 산불이 임의(random) 분포가 아닌 군집화(clustered)되어 발생하는 특징이 있는 것으로 나타났다. 또한, 산불 발생의 군집성을 원인별로 크게 두 집단으로 나눌 수 있었다. 첫째는 전국적 발생 패턴을 가지는 원인으로 입산자 실화, 논밭두렁 소각과 같은 활동과 관련된 것이고 또 다른 하나는 국지적 군집성을 가지는 원인으로 담뱃불이나 어린이 불장난, 방화이다. 그 군집성의 범위는 30 km내외로 나타났으며, 그 범위 밖에서는 임의 분포하고 있었다. Kernel 함수에 의한 원인별 집중도 분석에서는 강한 군집도를 나타냈던 3가지 원인(담뱃불, 어린이 불장난, 방화)의 경우 대부분 인구밀도가 높은 수도권을 중심으로 발생하는 것을 확인할 수 있었다.

Keywords

References

  1. 곽한빈, 이우균, 이시영, 원명수, 이명보, 구교상. 2008. 산불 발생 분포와 지형, 지리, 기상 인자간의 관계 분 석. 한국GIS학회 춘.추계학술대회, pp. 465-470.
  2. 산림청, 산불정보시스템. http://sanfire.forest.go.kr/foahome/ (2009. 9. 15).
  3. 안상현, 이시영, 원명수, 이명보, 신영철. 2004. 공간분 석에 의한 산불발생확률모형 개발 및 위험지도 작성. 한국지리정보학회지 7(4): 57-64.
  4. 원명수, 구교상, 이명보. 2006. 우리나라의 봄철 순평년 온습도 변화에 따른 산불발생위험성 분석. 한국농림기상학회지 8(4): 250-259.
  5. 이병두, 원명수, 장광민, 이명보. 2008. 지형과 산불피 해도와의 관계 분석. 한국지리정보학회지 11(1): 58-67.
  6. 이시영, 강용석, 안상현, 오정수. 2002. GIS를 이용한 산불피해지역 특성분석. 한국지리정보학회지 5(1): 20-26.
  7. 이시영, 안상현, 원명수, 이명보, 임태규, 신영철. 2004. GIS를 이용한 산불발생위험지역 구분. 한국지리정보학회지 7(2): 37-46.
  8. 이시영, 한상열, 안상현, 이명보, 오정수. 2001a. 구두발 표 6 분과; 삼림기상/산불 : 지역별 산불발생 위험요인 특성 분석. 한국농림기상학회 학술발표논문집: pp. 123-126.
  9. 이시영, 한상열, 안상현, 오정수, 조명희, 김명수. 2001b. 강원도 지역 산불발생인자의 지역별 유형화. 한국농림기상학회지 3(3): 135-142.
  10. 정형철, 전명식. 1991. 커널확률밀도함수 추정을 활용한 군집분석. 응용통계 6: 27-41.
  11. 최광용, 권원태. 2008. 현재와 미래 우리나라 겨울철 강 수형태 변화. 대한지리학회지 43(1): 1-19.
  12. Baddeley, A. and Silverman, B. 1984. A cautionary example on the use of second-order methods for analyzing point patterns. Biometrics 40(4): 1089-1093. https://doi.org/10.2307/2531159
  13. Chuvieco, E. and Salas, J. 1996. Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Science 10(3): 333-345.
  14. Diggle, P. 1983. Statistical analysis of spatial point patterns, Academic Press, London.
  15. Diggle, P. 1985. A kernel method for smoothing point process data. Journal of the Royal Statistical Society. Series C (Applied Statistics) 34(2): 138-147.
  16. Dixon, P. 2002. Ripley's K-function. In: El-Shaarawi, A. H. & Piergorsch, W.W. (eds.) The encyclopedia of environ- metrics, pp. 1976-1803. John Wiley & Sons Ltd, New York, NY, US.
  17. Garcia, V., Woodard, P., Titus, S., Adamowicz, W. and Lee, B. 1995. A logit model for predicting the daily occurrence of human caused forest fires. International Journal of Wildland Fire 5(2): 101-111. https://doi.org/10.1071/WF9950101
  18. Getis, A. and Franklin, J. 1987. Second-order neighborhood analysis of mapped point patterns. Ecology: 473-477.
  19. Kasischke, E., Williams, D. and Barry, D. 2002. Analysis of the patterns of large fires in the boreal forest region of Alaska. International Journal of Wildland Fire 11(2): 131-144. https://doi.org/10.1071/WF02023
  20. Martell, D., Otukol, S., and Stocks, B. 1987. A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Canadian Journal of Forest Research 17(5): 394-401. https://doi.org/10.1139/x87-068
  21. Pew, K. and Larsen, C. 2001. GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada. Forest Ecology and Management 140(1): 1-18. https://doi.org/10.1016/S0378-1127(00)00271-1
  22. Ripley, B. 1976. The second-order analysis of stationary point processes. Journal of Applied Probability: 255-266.
  23. Schabenberger, O. and Gotway, C. 2005. Statistical methods for spatial data analysis. CRC Press.
  24. Silverman, B. 1981. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society. Series B (Methodological) 43(1): 97-99.
  25. Stone, C. 1984. An asymptotically optimal window selection rule for kernel density estimates. The Annals of Statistics: 1285-1297.
  26. Yang, J., He, H., Shifley, S. and Gustafson, E. 2007. Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. Forest Science 53(1): 1-15.