Development of Stem Profile and Taper Equation for Quercus acuta in Jeju Experiment Forests

제주시험림의 붉가시나무 수간형태와 수간곡선식 추정

  • Chung, Young-Gyo (Warm Temperate Fores Research Center, Korea Forest Research Institute) ;
  • Kim, Dae-Hyun (Warm Temperate Fores Research Center, Korea Forest Research Institute) ;
  • Kim, Cheol-Min (Warm Temperate Fores Research Center, Korea Forest Research Institute)
  • 정영교 (국립산림과학원 난대산림연구소) ;
  • 김대현 (국립산림과학원 난대산림연구소) ;
  • 김철민 (국립산림과학원 난대산림연구소)
  • Received : 2009.11.18
  • Accepted : 2010.02.23
  • Published : 2010.03.31

Abstract

Data with collected from 278 trees sampled through out the climatic range of Quercus acuta in Jeju Experiment Forests. The models tested to select the best-fit equations form the Max & Burkhart's model, Kozak's model, and Lee's model. Performance of the equations in predicting of residuals on predicted values. In result, all three models gave slightly better values of fit statistics. In plotting residuals against predicted diameter, Max & Burkhart's model showed underestimation in predicting small diameter and Lee's Model did the same in predicting small diameter. Based on the above analysis of three models in predicting stem taper, Kozak's model was chosen for the best-fit stem taper equations, and its parameter estimates was given for Quercus acuta. Kozak's model was used to develop a stem volume table outside bark for Quercus acuta.

본 연구는 난대산림연구소의 제주시험림에 있는 붉가시나무(Quercus acuta)에 대한 개체목의 수간곡선식 추정 및 간재적을 추정하기 위하여 수행되었다. 최적의 추정식을 선택하기 위하여 Max and Burkhart식, Kozak식 및 Lee식을 적용하여 각 식의 직경 추정에 대한 검정 통계량 및 실측치와 추정치간의 오차분포를 검증하였다. 그 결과 Max and Burkhart식 및 Lee식이 특정 구간에서 과대치 또는 과소 추정치를 보인데 반하여 Kozak식은 전구간에서 고른 분포를 보였다. 추정력이 가장 좋은 Kozak식을 활용하여 수피포함 재적표를 작성하였다.

Keywords

References

  1. 산림청, 2008. 재적.중량표(입목 및 원목). 산림청. 대전. pp. 228.
  2. 손영모, 이경학, 이우균, 권순덕. 2002. 우리나라 주요 6수종의 수간곡선식. 한국임학회지, 91(2): 213-218.
  3. 이경학, 손영모, 정영교, 이우균. 1999. 강원지방소나무의 개체목 수간곡선 및 재적추정시스템. 산림과학논문집 62: 155-166.
  4. 이우균, 1994. Spline 함수와 선형방정식을 이용한 수간 및 임분간곡선 모델. 한국임학회지 83(1): 63-74.
  5. Bi, H. 2000. Trigonometric variable-form taper equations for Australian eucalyptus. For. Sci. 46, 397-409.
  6. Biging, G.S 1984. Taper equations for second-growth mixed conifers of Northern California. For. Sci. 30: 1103-1117.
  7. Bonnor, G.M. and Boudewyn, P. 1990. Taper-volume equations for major tree species of the Yukon Territory. Forestry Canda Pacific and Yukon Region Information Report BC-X-323. 18pp.
  8. Demaerschalk, J. 1972. Converting volume equations to compatible taper equations. For. Sci. 18: 241-245.
  9. Fang, Z., Borders, B.E. and Bailey, R.L. 2000. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For. Sci. 46: 1-12.
  10. Goulding, C.J. and Murray, J.C. 1976. Polynomial taper equations that are compatible with tree volume equations. N. Z. J. For. Sci. 5: 313-322.
  11. Kozak, A. 1988. A variable-exponent taper equation. Can. J. For. Res. 18: 1363-1368. https://doi.org/10.1139/x88-213
  12. Kozak, A. 2004. My last words on taper functions. For. Chron. 80: 507-515
  13. Lee, W.K. 1993. Wachstums-und Ertragsmodelle fur Pinus densiflora in der Kangwon-Provinz, Korea. Dissertation, Gottingen.
  14. Max, T.A. and Burkhart, H.E. 1976. Segmented polynomial regression applied to taper equations. For. Sci. 22: 283-289.
  15. Charles K. Muhairwe, 1994. Tree form and taper variation over time for interior lodgepole pine. Canadian Journal of Forest Research, 24(9): 1904-1913. https://doi.org/10.1139/x94-245
  16. Newnham, R. 1992. Variable-formtaper functions for four Alberta tree species. Can. J. For. Res. 22: 210-223. https://doi.org/10.1139/x92-028