DOI QR코드

DOI QR Code

Estimation of Radiation Exposure of 128-Slice 4D-Perfusion CT for the Assessment of Tumor Vascularity

  • Ketelsen, Dominik (Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen) ;
  • Horger, Marius (Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen) ;
  • Buchgeister, Markus (Departments of Radiotherapy and Radiooncology, University Hospital Tuebingen) ;
  • Fenchel, Michael (Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen) ;
  • Thomas, Christoph (Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen) ;
  • Boehringer, Nadine (Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen) ;
  • Schulze, Maximilian (Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen) ;
  • Tsiflikas, Ilias (Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen) ;
  • Claussen, Claus D. (Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen) ;
  • Heuschmid, Martin (Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen)
  • Received : 2010.02.11
  • Accepted : 2010.06.03
  • Published : 2010.10.01

Abstract

Objective: We aimed to estimate the effective dose of 4D-Perfusion-CT protocols of the lung, liver, and pelvis for the assessment of tumor vascularity. Materials and Methods: An Alderson-Rando phantom equipped with thermoluminescent dosimeters was used to determine the effective dose values of 4D-Perfusion-CT. Phantom measurements were performed on a 128-slice singlesource scanner in adaptive 4D-spiral-mode with bidirectional table movement and a total scan range of 69 mm over a time period of nearly 120 seconds (26 scans). Perfusion measurements were simulated for the lung, liver, and pelvis under the following conditions: lung (80 kV, 60 mAs), liver (80 kV/80 mAs and 80 kV/120 mAs), pelvis (100 kV/80 mAs and 100 kV/120 mAs). Results: Depending on gender, the evaluated body region and scan protocol, an effective whole-body dose between 2.9-12.2 mSv, was determined. The radiation exposure administered to gender-specific organs like the female breast tissue (lung perfusion) or to the ovaries (pelvic perfusion) led to an increase in the female specific dose by 86% and 100% in perfusion scans of the lung and the pelvis, respectively. Conclusion: Due to a significant radiation dose of 4D-perfusion-CT protocols, the responsible use of this new promising technique is mandatory. Gender- and organ-specific differences should be considered for indication and planning of tumor perfusion scans.

Keywords

References

  1. Miles KA. Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol 2003;76:S36-S42 https://doi.org/10.1259/bjr/18486642
  2. Wu GY, Ghimire P. Perfusion computed tomography in colorectal cancer: protocols, clinical applications and emerging trends. World J Gastroenterol 2009;15:3228-3231 https://doi.org/10.3748/wjg.15.3228
  3. Li WW. Tumor angiogenesis: molecular pathology, therapeutic targeting, and imaging. Acad Radiol 2000;7:800-811 https://doi.org/10.1016/S1076-6332(00)80629-7
  4. Ketelsen D, Thomas C, Werner M, Luetkhoff MH, Buchgeister M, Tsiflikas I, et al. Dual-source computed tomography: estimation of radiation exposure of ECG-gated and ECG-triggered coronary angiography. Eur J Radiol 2010;73:274-279 https://doi.org/10.1016/j.ejrad.2008.10.033
  5. Hunold P, Vogt FM, Schmermund A, Debatin JF, Kerkhoff G, Budde T, et al. Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 2003;226:145-152 https://doi.org/10.1148/radiol.2261011365
  6. Ketelsen D, Luetkhoff MH, Thomas C, Werner M, Buchgeister M, Tsiflikas I, et al. Estimation of the radiation exposure of a chest pain protocol with ECG-gating in dual-source computed tomography. Eur Radiol 2009;19:37-41 https://doi.org/10.1007/s00330-008-1109-4
  7. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007;37:1-332
  8. Ng QS, Goh V, Klotz E, Fichte H, Saunders MI, Hoskin PJ, et al. Quantitative assessment of lung cancer perfusion using MDCT: does measurement reproducibility improve with greater tumor volume coverage? AJR Am J Roentgenol 2006;187:1079-1084 https://doi.org/10.2214/AJR.05.0889
  9. Park MS, Klotz E, Kim MJ, Song SY, Park SW, Cha SW, et al. Perfusion CT: noninvasive surrogate marker for stratification of pancreatic cancer response to concurrent chemo- and radiation therapy. Radiology 2009;250:110-117 https://doi.org/10.1148/radiol.2493080226
  10. Ng CS, Wang X, Faria SC, Lin E, Charnsangavej C, Tannir NM. Perfusion CT in patients with metastatic renal cell carcinoma treated with interferon. AJR Am J Roentgenol 2010;194:166-171 https://doi.org/10.2214/AJR.09.3105
  11. Petralia G, Preda L, D'Andrea G, Viotti S, Bonello L, De Filippi R, et al. CT perfusion in solid-body tumours. Part I: technical issues. Radiol Med 2010 [Epub ahead of print]
  12. Yang HF, Du Y, Ni JX, Zhou XP, Li JD, Zhang Q, et al. Perfusion computed tomography evaluation of angiogenesis in liver cancer. Eur Radiol 2010;20:1424-1430 https://doi.org/10.1007/s00330-009-1693-y
  13. Bellomi M, Viotti S, Preda L, D'Andrea G, Bonello L, Petralia G. Perfusion CT in solid body-tumours part II. Clinical applications and future development. Radiol Med 2010 [Epub ahead of print]
  14. Zhong L, Wang WJ, Xu JR. Clinical application of hepatic CT perfusion. World J Gastroenterol 2009;15:907-911 https://doi.org/10.3748/wjg.15.907
  15. Bellomi M, Petralia G, Sonzogni A, Zampino MG, Rocca A. CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma: initial experience. Radiology 2007;244:486-493 https://doi.org/10.1148/radiol.2442061189
  16. Cuenod CA, Fournier L, Balvay D, Guinebretiere JM. Tumor angiogenesis: pathophysiology and implications for contrastenhanced MRI and CT assessment. Abdom Imaging 2006;31:188-193 https://doi.org/10.1007/s00261-005-0386-5
  17. Kapanen M, Halavaara J, Hakkinen AM. Comparison of liver perfusion parameters studied with conventional extravascular and experimental intravascular CT contrast agents. Acad Radiol 2007;14:951-958 https://doi.org/10.1016/j.acra.2007.04.018
  18. Kudo M. Imaging blood flow characteristics of hepatocellular carcinoma. Oncology 2002;62:48-56 https://doi.org/10.1159/000048276
  19. Petralia G, Preda L, Giugliano G, Jereczek-Fossa BA, Rocca A, D'Andrea G, et al. Perfusion computed tomography for monitoring induction chemotherapy in patients with squamous cell carcinoma of the upper aerodigestive tract: correlation between changes in tumor perfusion and tumor volume. J Comput Assist Tomogr 2009;33:552-559 https://doi.org/10.1097/RCT.0b013e31818d446e
  20. Gillard JH, Antoun NM, Burnet NG, Pickard JD. Reproducibility of quantitative CT perfusion imaging. Br J Radiol 2001;74:552-555
  21. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007;357:2277- 2284 https://doi.org/10.1056/NEJMra072149
  22. Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dualenergy scanning. AJR Am J Roentgenol 2010;194:881-889 https://doi.org/10.2214/AJR.09.3462
  23. Boetticher H, Lachmund J, Looe HK, Hoffmann W, Poppe B. 2007 recommendations of the ICRP change basis for estimation of the effective dose: what is the impact on radiation dose assessment of patient and personnel? Rofo 2008;180:391-395 https://doi.org/10.1055/s-2008-1027284
  24. Prakash P, Kalra MK, Gilman MD, Shepard JA, Digumarthy SR. Is weight-based adjustment of automatic exposure control necessary for the reduction of chest CT radiation dose? Korean J Radiol 2010;11:46-53 https://doi.org/10.3348/kjr.2010.11.1.46
  25. Kalra MK, Dang P, Singh S, Saini S, Shepard JA. In-plane shielding for CT: effect of off-centering, automatic exposure control and shield-to-surface distance. Korean J Radiol 2009;10:156-163 https://doi.org/10.3348/kjr.2009.10.2.156
  26. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT radiation dose optimization. Radiology 2004;230:619-628 https://doi.org/10.1148/radiol.2303021726
  27. Gallagher MJ, Raff GL. Use of multislice CT for the evaluation of emergency room patients with chest pain: the so-called "triple rule-out". Catheter Cardiovasc Interv 2008;71:92-99 https://doi.org/10.1002/ccd.21398

Cited by

  1. Multifunctional Profiling of Non-Small Cell Lung Cancer Using 18F-FDG PET/CT and Volume Perfusion CT vol.53, pp.4, 2012, https://doi.org/10.2967/jnumed.111.097865
  2. CT Radiation Dose Optimization and Estimation: an Update for Radiologists vol.13, pp.1, 2010, https://doi.org/10.3348/kjr.2012.13.1.1
  3. Optimisation et réduction de la dose des scanners en pathologie ostéoarticulaire vol.94, pp.4, 2010, https://doi.org/10.1016/j.jradio.2012.04.007
  4. Assessment of Tumor Vascularity in Lung Cancer Using Volume Perfusion CT (VPCT) With Histopathologic Comparison: A Further Step Toward an Individualized Tumor Characterization vol.37, pp.1, 2013, https://doi.org/10.1097/rct.0b013e318277c84f
  5. Does volume perfusion computed tomography enable differentiation of metastatic and non-metastatic mediastinal lymph nodes in lung cancer patients? A feasibility study vol.13, pp.3, 2010, https://doi.org/10.1102/1470-7330.2013.0033
  6. Characterization of incidental cardiac masses in oncological patients using a new CT-based tumor volume perfusion technique vol.54, pp.8, 2010, https://doi.org/10.1177/0284185113488020
  7. Assessment of the nature of residual masses at end of treatment in lymphoma patients using volume perfusion computed tomography vol.24, pp.3, 2014, https://doi.org/10.1007/s00330-013-3077-6
  8. Explanations for the heterogeneity of splenic enhancement derived from blood flow kinetic measurements using dynamic contrast-enhanced CT (DCE-CT) vol.55, pp.6, 2010, https://doi.org/10.1177/0284185113503322
  9. CT perfusion imaging in response assessment of pulmonary metastases undergoing stereotactic ablative radiotherapy vol.59, pp.2, 2015, https://doi.org/10.1111/1754-9485.12272
  10. C-arm computed tomography and volume perfusion computed tomography (VPCT)-based assessment of blood volume changes in hepatocellular carcinoma in prediction of midterm tumor response to transarterial vol.16, pp.None, 2010, https://doi.org/10.1186/s40644-016-0088-y
  11. CT-perfusion measurements in pancreatic carcinoma with different kinetic models: Is there a chance for tumour grading based on functional parameters? vol.16, pp.None, 2010, https://doi.org/10.1186/s40644-016-0100-6
  12. Feasibility of dual-low scheme combined with iterative reconstruction technique in acute cerebral infarction volume CT whole brain perfusion imaging vol.14, pp.1, 2010, https://doi.org/10.3892/etm.2017.4451
  13. Variations of quantitative perfusion measurement on dynamic contrast enhanced CT for colorectal cancer: implication of standardized image protocol vol.63, pp.16, 2010, https://doi.org/10.1088/1361-6560/aacb99
  14. Negative CT Contrast Agents for the Diagnosis of Malignant Osteosarcoma vol.6, pp.23, 2010, https://doi.org/10.1002/advs.201901214
  15. Greater reductions in blood flow after anti-angiogenic treatment in non-small cell lung cancer patients are associated with shorter progression-free survival vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-021-86405-w