Sunitinib이 FRTL-5 세포의 증식 및 생존에 미치는 영향

Effect of sunitinib on the proliferation and survival of FRTL-5 cells

  • 김원구 (울산대학교 의과대학 서울아산병원 내분비내과) ;
  • 최현정 (아산생명과학연구소) ;
  • 김의영 (울산대학교 의과대학 서울아산병원 내분비내과) ;
  • 임지혜 (울산대학교 의과대학 서울아산병원 내분비내과) ;
  • 한지민 (울산대학교 의과대학 서울아산병원 내분비내과) ;
  • 김진아 (아산생명과학연구소) ;
  • 김태용 (울산대학교 의과대학 서울아산병원 내분비내과) ;
  • 송영기 (울산대학교 의과대학 서울아산병원 내분비내과) ;
  • 김원배 (울산대학교 의과대학 서울아산병원 내분비내과)
  • Kim, Won-Gu (Department of Endocrinology & Metabolism, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Choi, Hyun-Jeung (Asan Institute of Life Sciences) ;
  • Kim, Eui-Young (Department of Endocrinology & Metabolism, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yim, Ji-Hye (Department of Endocrinology & Metabolism, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Han, Ji-Min (Department of Endocrinology & Metabolism, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Jin-A (Asan Institute of Life Sciences) ;
  • Kim, Tae-Yong (Department of Endocrinology & Metabolism, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Shong, Young-Kee (Department of Endocrinology & Metabolism, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Won-Bae (Department of Endocrinology & Metabolism, Asan Medical Center, University of Ulsan College of Medicine)
  • 투고 : 2010.06.22
  • 심사 : 2010.09.10
  • 발행 : 2010.11.01

초록

목적: 최근 소화기 기질 종양과 신장암의 치료에 사용되고 있는 표적 치료제인 sunitinib은 36~85%의 환자에서 갑상선 기능 이상을 유발하였다. 아직 sunitinib이 갑상선 기능 저하를 일으키는 기전은 명확히 알려진 바가 없다. 본 연구에서는 현재 가장 널리 사용되고 있는 정상 갑상선 세포 모델인 FRTL-5 세포를 이용하여 sunitinib이 갑상선 세포에 미치는 영향을 확인하고자 하였다. 방법: FRTL-5 세포에서 sunitinib이 세포의 증식에 미치는 영향을 갑상선 자극 호르몬(TSH)의 유무에 따라서 확인하였다. 유속 세포 측정 분석을 통해서 세포 주기에 미치는 영향과 세포 자연사의 여부를 확인하였다. 세포 주기의 진행과 관련된 단백 발현량의 변화는 웨스턴 블롯을 통해서 확인하였다. 결과: Sunitinib은 농도와 시간 의존적으로 FRTL-5 세포의 증식을 억제하였으며, TSH가 존재하는 조건에서 그 영향이 뚜렷하였다. FRTL-5의 세포 주기는 sunitinib에 의해서 G1-S 기에 멈추었으며, 15 ${\mu}M$의 고농도에서는 caspase-3를 활성화하고 세포의 자연사를 촉진하였다. TSH에 의해서 기저에서 억제되어 있었던 $p21^{cip1}$$p27^{kip1}$의 단백 발현이 sunitinib에 의해서 증가되는 것을 웨스턴 블롯으로 확인하였다. 또한, G1-S기 진행에 관련된 cyclin D1, cyclin dependent kinase 2는 sunitinib에 의해서 억제되었다. 결론: 정상 갑상선 세포주인 FRTL-5 세포는 TSH가 존재하는 상태에서 sunitinib에 의해서 세포의 증식을 더욱 억제하였고, 고농도에서는 세포 자연사를 유발하였다. Sunitinib은 TSH에 의해서 기존에 억제되어 있던 $p27^{kip1}/p21^{cip1}$ 단백발현을 증가시키면서 세포 주기를 G1-S기에 멈추도록 하였으며, 이는 sunitinib이 TSH의 작용을 방해할 수 있음을 보여주고 있다.

Background/Aims: Hypothyroidism has been reported in 36~85% of patients treated with sunitinib for renal cell carcinoma or gastrointestinal stromal tumor. However, the mechanism behind this hypothyroidism is unclear. This study evaluated the effects of sunitinib, a multi-target tyrosine kinase inhibitor, on the survival and proliferation of thyrocytes using FRTL-5 rat thyroid cells. Methods: We examined the effect of sunitinib on cell proliferation in the presence and absence of thyroid stimulating hormone (TSH) in a colorimetric assay. Effects on the cell cycle were evaluated by flow cytometry, and on apoptosis using an annexin V apoptosis assay kit and by immunoblotting for caspase-3. Immunoblotting was also used to evaluate changes in the levels of intracellular proteins associated with the G1-S phase of the cell cycle. Results: Sunitinib suppressed the proliferation of FRTL-5 cells in a dose- and time-dependent manner. This suppressive effect was enhanced by the presence of TSH (1 mU/mL). Sunitinib was subsequently shown, in flow cytometric analyses, to arrest the cell cycle at the G1-S phase. Furthermore, it induced apoptosis at a high concentration (15 ${\mu}M$) by activating caspase-3. G1-S phase arrest was associated with the induction of $p27^{kip1}$ and $p21^{cip1}$, whose expression is suppressed by TSH under control conditions. Sunitinib also decreased intracellular levels of cyclin D1 and cyclin-dependent kinase 2 in FRTL-5 cells. Conclusions: Sunitinib induced apoptosis in and suppressed the proliferation of FRTL-5 cells. Its suppression of proliferation was further enhanced by the presence of TSH. Sunitinib arrested the cell cycle in the G1-S phase by inducing the expression of $p27^{kip1}/p21^{cip1}$, which are suppressed by TSH under normal conditions. Collectively, these findings suggest that sunitinib may interfere with TSH signaling pathways in normal thyrocytes.

키워드

과제정보

연구 과제 주관 기관 : Korean Association of Internal Medicine

참고문헌

  1. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 25:884-896, 2007 https://doi.org/10.1200/JCO.2006.06.3602
  2. Sun L, Liang C, Shirazian S, Zhou Y, Miller T, Cui J, Fukuda JY, Chu JY, Nematalla A, Wang X, Chen H, Sistla A, Luu TC, Tang F, Wei J, Tang C. Discovery of 5-[5-fluoro-2-oxo-1, 2-dihydroindol-(3Z)-ylidenemethyl]-2, 4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J Med Chem 46:1116-1119, 2003 https://doi.org/10.1021/jm0204183
  3. Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM. SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2:471-478, 2003
  4. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327-337, 2003
  5. Vetter ML, Kaul S, Iqbal N. Tyrosine kinase inhibitors and the thyroid as both an unintended and an intended target. Endocr Pract 14:618-624, 2008 https://doi.org/10.4158/EP.14.5.618
  6. Rini BI, Tamaskar I, Shaheen P, Salas R, Garcia J, Wood L, Reddy S, Dreicer R, Bukowski RM. Hypothyroidism in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst 99:81-83, 2007 https://doi.org/10.1093/jnci/djk008
  7. Torino F, Corsello SM, Longo R, Barnabei A, Gasparini G. Hypothyroidism related to tyrosine kinase inhibitors: an emerging toxic effect of targeted therapy. Nat Rev Clin Oncol 6:219-228, 2009 https://doi.org/10.1038/nrclinonc.2009.4
  8. Wolter P, Stefan C, Decallonne B, Dumez H, Bex M, Carmeliet P, Schoffski P. The clinical implications of sunitinib-induced hypothyroidism: a prospective evaluation. Br J Cancer 99:448-454, 2008 https://doi.org/10.1038/sj.bjc.6604497
  9. Desai J, Yassa L, Marqusee E, George S, Frates MC, Chen MH, Morgan JA, Dychter SS, Larsen PR, Demetri GD, Alexander EK. Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann Intern Med 145:660-664, 2006 https://doi.org/10.7326/0003-4819-145-9-200611070-00008
  10. Tamaskar I, Bukowski R, Elson P, Ioachimescu AG, Wood L, Dreicer R, Mekhail T, Garcia J, Rini BI. Thyroid function test abnormalities in patients with metastatic renal cell carcinoma treated with sorafenib. Ann Oncol 19:265-268, 2008 https://doi.org/10.1093/annonc/mdm483
  11. de Groot JW, Zonnenberg BA, Plukker JT, van Der Graaf WT, Links TP. Imatinib induces hypothyroidism in patients receiving levothyroxine. Clin Pharmacol Ther 78:433-438, 2005 https://doi.org/10.1016/j.clpt.2005.06.010
  12. Wong E, Rosen LS, Mulay M, Vanvugt A, Dinolfo M, Tomoda C, Sugawara M, Hershman JM. Sunitinib induces hypothyroidism in advanced cancer patients and may inhibit thyroid peroxidase activity. Thyroid 17:351-355, 2007 https://doi.org/10.1089/thy.2006.0308
  13. Mannavola D, Coco P, Vannucchi G, Bertuelli R, Carletto M, Casali PG, Beck-Peccoz P, Fugazzola L. A novel tyrosine-kinase selective inhibitor, sunitinib, induces transient hypothyroidism by blocking iodine uptake. J Clin Endocrinol Metab 92:3531-3534, 2007 https://doi.org/10.1210/jc.2007-0586
  14. Salem AK, Fenton MS, Marion KM, Hershman JM. Effect of sunitinib on growth and function of FRTL-5 thyroid cells. Thyroid 18:631-635, 2008 https://doi.org/10.1089/thy.2007.0336
  15. Massague J. G1 cell-cycle control and cancer. Nature 432:298-306, 2004 https://doi.org/10.1038/nature03094
  16. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 432:316-323, 2004 https://doi.org/10.1038/nature03097
  17. Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8:547-566, 2009 https://doi.org/10.1038/nrd2907
  18. Medina DL, Santisteban P. Thyrotropin-dependent proliferation of in vitro rat thyroid cell systems. Eur J Endocrinol 143:161-178, 2000 https://doi.org/10.1530/eje.0.1430161
  19. Dumont JE, Lamy F, Roger P, Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev 72:667-697, 1992
  20. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 22:631-656, 2001 https://doi.org/10.1210/er.22.5.631