특발성 폐섬유증 환자에서 폐 섬유모세포 증식의 클론성에 관한 연구

Clonality analysis of fibroblast proliferation in patients with idiopathic pulmonary fibrosis

  • 이재승 (울산대학교 의과대학 서울아산병원 호흡기내과) ;
  • 전용감 (아산생명과학연구소) ;
  • 이상도 (울산대학교 의과대학 서울아산병원 호흡기내과)
  • Lee, Jae-Seung (Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jeon, Yong-Gam (Asan Life Science Institute) ;
  • Lee, Sang-Do (Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine)
  • 투고 : 2010.01.05
  • 심사 : 2010.03.22
  • 발행 : 2010.07.01

초록

목적: 특발성 폐섬유증(Idiopathic pulmonary fibrosis, IPF)의 조직학적 소견인 usual interstitial pneumonia (UIP)는 섬유모세포 집단병소(fibroblast foci) 형성이 특징이다. 특발성 폐섬유증은 폐포염(alveolitis)으로 시작된 폐조직의 염증반응이 중요한 병인으로 여겨져 왔으나, 최근에는 폐 상피세포 손상에 대한 치유과정의 이상으로 처음부터 섬유화가 진행한다는 가설이 대두되었다. 본 연구는 특발성 폐섬유증환자의 섬유모세포 집단병소를 구성하는 섬유모세포가 신생물(neoplasm)과 같이 단일클론성(monoclonal) 증식을 하는지 여부를 검증하였다. 방법: 일곱 명의 특발성 폐섬유증 여자 환자에서 개흉폐생검을 통해 얻은 폐 조직의 파라핀 블록을 사용하여 현미해부(microdissection) 방법으로 섬유모세포 집단병소에서 증식된 섬유모세포들을 분리하였다. 단일클론성 검정의 양성대조로는 특발성 폐동맥 고혈압 환자에서 관찰되는 총상병변(plexiform lesion)내 '증식된 혈관내피세포'를 이용하였다. 클론성 분석은 인간 남성호르몬 수용체 유전자 메틸화 검사(human androgen-receptor gene methylation assay, HUMARA) 방법을 이용하였다. 현미해부로 얻은 조직을 proteinase K buffer 처리 후 제한 핵산내부가수분해효소(Restriction endonuclease) HhaI로 분해한 조직과 분해하지 않은 조직을 각각 중합효소 연쇄반응(polymerase chain reaction, PCR)으로 증폭하였다. 증폭된 중합효소연쇄반응 생성물은 6% denaturing polyacrylamide sequencing gel로 전기영동 후 자가방사기록법(autoradiography)으로 분석하였다. 클론 비(Clonality ratio)는 검체의 대립유전자 불활성화 비(allele inactivation ratio)를 폐실질의 대립유전자 불활성화 비로 나누어 구하였다. 결과: 특발성 폐섬유증 일곱 예로부터 모두 24개의 섬유모세포 집단병소에 대해 섬유모세포 증식의 클론성 분석을 시행하였다. 24개 병변의 클론 비는 $0.70{\pm}0.18$ (평균${\pm}$표준편차) (범위 0.37~0.97)로 불균형 메틸화(unbalanced methylation, clonality ratio<0.25)를 보인 예는 없이 모두 다클론성이었다. 한편, 단일클론성의 양성 대조로 2예의 특발성 폐동맥 고혈압에서 10개의 총상병변내 내피세포의 클론성을 분석하였으며, 이 중 7개가 불균형 메틸화(clonality ratio<0.25)를 보여 단일클론성임을 확인하였다. 결론: 특발성 폐섬유증 환자 폐의 섬유모세포 집단병소를 구성하는 섬유모세포 증식은 다클론성임을 알 수 있었다. 즉, 특발성 폐섬유증 환자에서 폐 섬유모세포 증식은 창상치유에서와 같은 반응성과형성에 의한 것으로 여겨진다.

Background/Aims: Idiopathic pulmonary fibrosis (IPF) is defined pathologically by usual interstitial pneumonia (UIP), and contains characteristic discrete areas of fibroblasts, myofibroblasts, and newly formed collagen, termed "fibroblast foci". A new hypothesis postulates that IPF results from epithelial injury and abnormal wound repair without preceding chronic inflammation. We explored the hypothesis that fibroblasts in the fibroblast foci of IPF undergo neoplastic monoclonal proliferation rather than reactive polyclonal proliferation. Methods: We obtained fibroblasts from 24 fibroblast foci in seven female patients with IPF, endothelial cells from ten plexiform lesions of two female patients with idiopathic pulmonary arterial hypertension (IPAH) as a positive control for monoclonality, and lung parenchymal cells by microdissection of each formalin-fixed paraffin-embedded block of lung. To analyze clonality, we performed the human androgen-receptor gene methylation assay (HUMARA). DNA released by protein K digestion was subjected to polymerase chain reaction (PCR) amplification with prior digestion with and without the methylation-sensitive restriction enzyme HhaI. Then, we calculated the clonality ratio after electrophoretic analysis of the PCR amplification product. A clonality ratio <0.25 was considered evidence of monoclonal proliferation. Results: All of the patients included, i.e., the seven females with IPF and the two females with IPAH, showed polymorphism in the human androgen-receptor gene. The mean clonality ratio of the 24 fibroblast foci was 0.70 (SD: 0.18). All of the fibroblast foci had clonality ratios >0.25, suggesting polyclonality, whereas 7 of 10 plexiform lesions had clonality ratios <0.25 suggesting monoclonality. Conclusions: The polyclonality of the fibroblast foci in IPF suggests that the fibroblast proliferation in IPF is not neoplastic, but is reactive in nature.

키워드

참고문헌

  1. Turner-Warwick M, Burrows B, Johson A. Cryptogenic fibrosing alveolitis: response to corticosteroid treatment and its effect on survival. Thorax 35:593-599, 1980 https://doi.org/10.1136/thx.35.8.593
  2. Sheppard MN, Harrison NK. Lung injury, inflammatory mediators, and fibroblast activation in fibrosing alveolitis. Thorax 47:1064-1074, 1992 https://doi.org/10.1136/thx.47.12.1064
  3. Doherty DE, Worthen GS, Henson PM. Inflammation in interstitial lung disease. In: Schwarz MI, King TE, eds. Interstitial lung disease. 2nd ed. p23, St. Louis, Mosby-Yearbook, 1993
  4. Martinet Y, Rom WN, Grotendorst GR, Martin GR, Crystal RG. Exaggerated spontaneous release of platelet derived growth factor by alveolar macrophages from patients with idiopathic pulmonary fibrosis. N Engl J Med 317:202-209, 1987 https://doi.org/10.1056/NEJM198707233170404
  5. Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor ${\beta}-1$ is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A 88:6642-6646, 1991 https://doi.org/10.1073/pnas.88.15.6642
  6. Khalil N, O'Connor RN, Unruh HW, Warren Pw, Flanders KC, Kemp A, Berenznay OH, Greenberg AH. Increased production and immuno-histochemical localization of transforming growth $factor-{\beta}$ in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 5:155-162, 1991 https://doi.org/10.1165/ajrcmb/5.2.155
  7. Ryu JH, Colby TV, Hartman TE. Idiopathic pulmonary fibrosis: current concepts. Mayo Clin Proc 73:1085-1101, 1998 https://doi.org/10.4065/73.11.1085
  8. Katzenstein AA, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 157:1301-1315, 1998 https://doi.org/10.1164/ajrccm.157.4.9707039
  9. 김동순, 백상훈, 공경엽, 김동관, 박승일, 심태선, 임채만, 이상도, 고윤석, 김우성, 김원동. 정상인 및 간질성 폐섬유증 환자들의 폐 병변내 섬유모세포주의 증식양상 및 cytokine 분비능에 관한 연구. 결핵 및 호흡기 질환 45:128-139, 1998
  10. Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 101:927-934, 1998 https://doi.org/10.1172/JCI1910
  11. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HpaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X-chromosome inactivation. Am J Hum Genet 51:1229-1239, 1992
  12. Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation of five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12:241-253, 1992 https://doi.org/10.1016/0888-7543(92)90371-X
  13. Goldering SR, Stephenson ML, Downie E, Krane SM, Korn JH. Heterogeneity in hormone responses and patterns of collagen synthesis in cloned dermal fibroblasts. J Clin Invest 85:798-803, 1990 https://doi.org/10.1172/JCI114506
  14. Phipps RP, Penney DP, Keng P, Silbera M, Harkins S, Derdak S. Immune functions of subpopulations of lung fibroblasts. Immunol Res 9:275-286, 1990 https://doi.org/10.1007/BF02935527
  15. Elias JA, Rossman MD, Phillips PD. Phenotypic variability among density-fractionated human lung fibroblasts. Am Rev Respir Dis 135:57-61, 1987
  16. Jordana M, Saerstrand B, Sime PJ, Ramis L. Immune-inflammatory functions of fibroblasts. Eur Respir J 7:2212-2222, 1994 https://doi.org/10.1183/09031936.94.07122212
  17. Rolfe MW, Kunkel SL, Standiford TJ, Orringer MB, Phan S, Evanoff HL, Burdick MD, Strieter RM. Expression and regulation of human pulmonary fibroblast-derived monocyte chemotactic peptide-1. Am J Physiol 263:L536-L545, 1992
  18. Roja-Valencia L, Montiel F, Montano M, Selman M, Pardo A. Expression of a 2.8-kb PDGF-B/c-sis transcript and synthesis of PDGF-like protein by human lung fibroblasts. Chest 108:240-245, 1995 https://doi.org/10.1378/chest.108.1.240
  19. Driscoll KE, Hassenbreim DG, Carter J, Poyter J, Asquith TN, Grant RA, Whitten J, Purdon MP, Takigiku R. Macrophage inflammatory proteins 1 and 2: expression by ratalveolar macrophages, fibroblasts, and epithelial cells and in rat lung after mineral dust exposure. Am J Respir Cell Mol Biol 8:311-318, 1993 https://doi.org/10.1165/ajrcmb/8.3.311
  20. Mageto YN, Raghu G. Genetic predisposition of idiopathic pulmonary fibrosis. Curr Opin Pulm Med 3:336-340, 1997 https://doi.org/10.1097/00063198-199709000-00004
  21. Froncek MJ, Derdak S, Felch ME, Silvera MR, Watts HB, Phipps RP. Cellular and molecular characterization of Thy-1+and Thy-1-murine lung fibroblasts. In: Phipps RP, ed. Pulmonary fibroblast heterogeneity. p. 135, Boca Raton, CRC Press, 1992
  22. Xing Z, Jordana M, Braciak T, Ohtoshi T, Gauldie J. Lipopolysaccharide induces expression of granulocyte/macrophage colony-stimulat-ing factor, interleukin-8, and interleukin-6 in human nasal, but not lung fibroblasts: evidence for heterogeneity within the respiratory tract. Am J Respir Cell Mol Biol 9:255-263, 1993 https://doi.org/10.1165/ajrcmb/9.3.255
  23. Ko SD, Page RC, Narayan AS. Fibroblast heterogeneity and prostaglandin regulation of sub-populations. Proc Natl Acad Sci U S A 74:3429-3432, 1977 https://doi.org/10.1073/pnas.74.8.3429
  24. Derdak S, Penney DP, Keng P, Felch ME, Brown D. Phipps RP. Differential collagen and fibronectin production by Thy 1+ and Thy 1-lung fibroblast subpopulations. Am J Physiol Lung Cell Mol Physiol 263:L283-L290, 1992
  25. Korn JH. Substrain heterogeneity in prostaglandin $E_2$ synthesis of human dermal fibroblast: difference in prostaglandin $E_2$ synthetic capacity of substrains are not stimulus-restricted. Arthrit Rheum 28:315-322, 1985 https://doi.org/10.1002/art.1780280312
  26. Das M, Hopkins D, Walchak S, Stenmark K. Selective expansion of specific fibroblast subsets in the adventitia during the development of hypoxic pulmonary hypertension [Abstract]. Am J Respir Crit Care Med 161:A141, 2000 https://doi.org/10.1164/ajrccm.161.1.9905080
  27. Stenmark KR, Frid M, Nemenoff R, Dempsey EC, Das M. Hypoxia induces cell-specific changes in gene expression in vascular cell walls: implications for pulmonary hypertension. Adv Exp Med Biol 474:231-258, 1999 https://doi.org/10.1007/978-1-4615-4711-2_19
  28. Fialkow PJ. Use of genetic markers to study cellular origin and development of tumors in human females. Adv Cancer Res 15:191-226, 1972 https://doi.org/10.1016/S0065-230X(08)60375-9
  29. Fearon ER, Hamilton SR, Vogelstein B. Clonal analysis of human colorectal tumors. Science 238:193-197, 1987 https://doi.org/10.1126/science.2889267
  30. Fujita M, Enomoto T, Wada H, Inoue M, Okudaira Y, Shroyer KR. Application of clonal analysis: differential diagnosis for synchronous primary ovarian and endometrial cancers and metastatic cancer. Am J Clin Pathol 105:350-359, 1996
  31. Willman CL, Busque L, Griffith BB, Favara BE, McClain KL, Duncan MH, Gilliland DG. Langerhans'-cell histiocytosis (Histicytosis X): a clonal proliferative disease. N Engl J Med 331:154-160, 1994 https://doi.org/10.1056/NEJM199407213310303
  32. Noguchi S, Aihara T, Koyama K, Motomura K, Inaji H, Imaoka S. Discrimination between multicentric and multifocal carcinoma of the breast through clonal analysis. Cancer 74:872-877, 1994 https://doi.org/10.1002/1097-0142(19940801)74:3<872::AID-CNCR2820740313>3.0.CO;2-P
  33. Shroyer KR, Gudlaugsson. Analysis of clonality in archival tissue by polymerase chain reaction amplification of PGK-1. Hum Pathol 25:287-292, 1994 https://doi.org/10.1016/0046-8177(94)90201-1
  34. Lucas DR, Shroyer KR, McCarthy PJ, Markham NE, Fujita M, Enomoto TE. Desmoid tumor is a clonal cellular proliferation: PCR amplification of HUMARA for analysis of patterns of X-chromosome inactivation. Am J Surg Pathol 21:306-311, 1997 https://doi.org/10.1097/00000478-199703000-00006
  35. Mashal RD, Fejzo ML, Friedman AJ, Mitchner N, Nowak RA, Rein MS, Morton CC, Sklar J. Analysis of androgen receptor DNA reveals the independent clonal origin of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata. Genes Chromosom Cancer 11:1-6, 1994 https://doi.org/10.1002/gcc.2870110102