Acknowledgement
Supported by : NIH, Department of Veterans Affairs
References
- Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27: 229-237 https://doi.org/10.1016/0165-5728(90)90073-V
- Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M. (2004). Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 17: 359-366 https://doi.org/10.1016/j.nbd.2004.07.012
- Clark WM, Calcagno FA, Gabler WL, Smith JR, Coull BM. (1994). Reduction of central nervous system reperfusion injury in rabbits using doxycycline treatment. Stroke 25: 1411-1415 https://doi.org/10.1161/01.STR.25.7.1411
- Corsani L, Bizzoco E, Pedata F, Gianfriddo M, Faussone-Pellegrini MS, Vannucchi MG. (2008). Inducible nitric oxide synthase appears and is co-expressed with the neuronal isoform in interneurons of the rat hippocampus after transient ischemia induced by middle cerebral artery occlusion. Exp Neurol 211: 433-440 https://doi.org/10.1016/j.expneurol.2008.02.008
- Dugan LL, Bruno VM, Amagasu SM, Giffard RG. (1995). Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity. J Neurosci 15: 4545-4555
- Flavin MP, Coughlin K, Ho LT. (1997). Soluble macrophage factors trigger apoptosis in cultured hippocampal neurons. Neuroscience 80: 437-448 https://doi.org/10.1016/S0306-4522(97)00078-X
- Flavin MP, Ho LT. (1999). Propentofylline protects neurons in culture from death triggered by macrophage or microglial secretory products. J Neurosci Res 56: 54-59 https://doi.org/10.1002/(SICI)1097-4547(19990401)56:1<54::AID-JNR7>3.0.CO;2-2
- Flavin MP, Zhao G. (2001). Tissue plasminogen activator protects hippocampal neurons from oxygen-glucose deprivation injury. J Neurosci Res 63: 388-394 https://doi.org/10.1002/1097-4547(20010301)63:5<388::AID-JNR1033>3.0.CO;2-T
- Flavin MP, Zhao G, Ho LT. (2000). Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29: 347-354 https://doi.org/10.1002/(SICI)1098-1136(20000215)29:4<347::AID-GLIA5>3.0.CO;2-8
- Gordon PH, Moore DH, Miller RG, et al. (2007). Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 6: 1045-1053 https://doi.org/10.1016/S1474-4422(07)70270-3
- Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA. (2002). Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22: 3921-3928
- Lampl Y, Boaz M, Gilad R, et al. (2007). Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69: 1404-1410 https://doi.org/10.1212/01.wnl.0000277487.04281.db
- Lee JE, Yenari MA, Sun GH, et al. (2001). Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 170: 129-139 https://doi.org/10.1006/exnr.2000.7614
- Liu T, Clark RK, McDonnell PC, et al. (1994). Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 25: 1481-1488 https://doi.org/10.1161/01.STR.25.7.1481
- Siao CJ, Fernandez SR, Tsirka SE. (2003). Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci 23: 3234-3242
- Stoll G, Jander S, Schroeter M. (2002). Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol 513: 87-113 https://doi.org/10.1007/978-1-4615-0123-7_3
- Tang XN, Wang Q, Koike MA, et al. (2007). Monitoring the protective effects of minocycline treatment with radiolabeled annexin V in an experimental model of focal cerebral ischemia. J Nucl Med 48: 1822-1828 https://doi.org/10.2967/jnumed.107.041335
- Tikka TM, Koistinaho JE. (2001). Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 166: 7527-7533. https://doi.org/10.4049/jimmunol.166.12.7527
- Wang Q, Tang XN, Yenari MA. (2007). The inflammatory response in stroke. J Neuroimmunol 184: 53-68 https://doi.org/10.1016/j.jneuroim.2006.11.014
- Wang X, Zhu S, Drozda M, et al. (2003). Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proc Natl Acad Sci U S A 100: 10483-10487 https://doi.org/10.1073/pnas.1832501100
- Yenari MA, Giffard RG. (2001). Ischemic vulnerability of primary murine microglial cultures. Neurosci Lett 298: 5-8 https://doi.org/10.1016/S0304-3940(00)01724-9
- Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG. (2006). Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37: 1087-1093 https://doi.org/10.1161/01.STR.0000206281.77178.ac
- Ying W, Han SK, Miller JW, Swanson RA. (1999). Acidosis potentiates oxidative neuronal death by multiple mechanisms. J Neurochem 73: 1549-1556
- Yrjanheikki J, Keinänen R, Pellikka M, Hokfelt T, Koistinaho J. (1998). Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95: 15769-15774 https://doi.org/10.1073/pnas.95.26.15769
- Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. (1999). A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 96: 13496-13500 https://doi.org/10.1073/pnas.96.23.13496
- Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA. (2008). Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28: 53-63 https://doi.org/10.1038/sj.jcbfm.9600502
- Zhu S, Stavrovskaya IG, Drozda M, et al. (2002). Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417: 74-78 https://doi.org/10.1038/417074a
Cited by
- Tetracyclines and pain vol.385, pp.3, 2010, https://doi.org/10.1007/s00210-012-0727-1
- SEPARATION DIFFERENCES AMONG PHENYL HYDRIDE, UDC CHOLESTEROL, AND BIDENTATE C8 STATIONARY PHASES FOR STABILITY INDICATING METHODS OF TETRACYCLINES vol.36, pp.7, 2013, https://doi.org/10.1080/10826076.2012.678457
- Triggering Receptor Expressed on Myeloid Cells-2 Correlates to Hypothermic Neuroprotection in Ischemic Stroke vol.3, pp.4, 2010, https://doi.org/10.1089/ther.2013.0020
- Minocycline Alleviates Sevoflurane-Induced Cognitive Impairment in Aged Rats vol.35, pp.4, 2010, https://doi.org/10.1007/s10571-014-0154-6
- Systems Biology of Immunomodulation for Post-Stroke Neuroplasticity: Multimodal Implications of Pharmacotherapy and Neurorehabilitation vol.7, pp.None, 2010, https://doi.org/10.3389/fneur.2016.00094
- Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processin vol.7, pp.None, 2016, https://doi.org/10.3389/fphar.2016.00367
- Central nervous system myeloid cells as drug targets: current status and translational challenges vol.15, pp.2, 2016, https://doi.org/10.1038/nrd.2015.14
- Bullatine A stimulates spinal microglial dynorphin A expression to produce anti-hypersensitivity in a variety of rat pain models vol.13, pp.None, 2016, https://doi.org/10.1186/s12974-016-0696-2
- Microglia after Seizures and in Epilepsy vol.7, pp.4, 2010, https://doi.org/10.3390/cells7040026
- Minocycline promotes posthemorrhagic neurogenesis via M2 microglia polarization via upregulation of the TrkB/BDNF pathway in rats vol.120, pp.3, 2018, https://doi.org/10.1152/jn.00234.2018
- Minocycline protects against myocardial ischemia/reperfusion injury in rats by upregulating MCPIP1 to inhibit NF-κB activation vol.40, pp.8, 2010, https://doi.org/10.1038/s41401-019-0214-z
- Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets vol.9, pp.11, 2010, https://doi.org/10.3390/brainsci9110318
- Minocycline fails to improve neurologic and histologic outcome after ventricular fibrillation cardiac arrest in rats vol.8, pp.7, 2010, https://doi.org/10.5492/wjccm.v8.i7.106
- Microglial depletion aggravates the severity of acute and chronic seizures in mice vol.89, pp.None, 2020, https://doi.org/10.1016/j.bbi.2020.06.028
- Seizure progression triggered by IQSEC3 loss is mitigated by reducing activated microglia in mice vol.68, pp.12, 2010, https://doi.org/10.1002/glia.23876
- Neuroinflammatory contribution of microglia and astrocytes in fetal alcohol spectrum disorders vol.99, pp.8, 2010, https://doi.org/10.1002/jnr.24735