DOI QR코드

DOI QR Code

Direct protection of cultured neurons from ischemia-like injury by minocycline

  • Huang, Wendy C. (Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center) ;
  • Qiao, Yanli (Department of Anesthesia, Stanford University School of Medicine) ;
  • Xu, Lijun (Department of Anesthesia, Stanford University School of Medicine) ;
  • Kacimi, Rachid (Department of Anesthesia, Stanford University School of Medicine) ;
  • Sun, Xiaoyun (Department of Anesthesia, Stanford University School of Medicine) ;
  • Giffard, Rona G. (Department of Neurosurgery, Stanford University School of Medicine) ;
  • Yenari, Midori A. (Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center)
  • Received : 2010.11.03
  • Accepted : 2010.12.09
  • Published : 2010.12.30

Abstract

Minocycline, a tetracycline antibiotic, is now known to protect cells via an anti-inflammatory mechanism. We further explored this effect using an in vitro model of ischemia-like injury to neurons. Coculturing neurons with microglia, the brain's resident immune cell, modestly increased cell death due to oxygen and glucose deprivation (OGD), compared to neurons alone. Treatment of cocultures with minocycline decreased cell death to a level significantly lower than that of neurons alone. Treatment of cocultures with minocycline or inhibitors of various immune mediators, also led to decreased cell death. Importantly, treatment of neuron cultures without added microglia with these same inhibitors of tissue plasminogen activator, matrix metalloproteinases, TNF-alpha and inducible nitric oxide synthase as well as minocycline also led to decreased cell death. Thus, anti-inflammatory treatments appear to be directly protective of neurons from in vitro ischemia.

Keywords

Acknowledgement

Supported by : NIH, Department of Veterans Affairs

References

  1. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27: 229-237 https://doi.org/10.1016/0165-5728(90)90073-V
  2. Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M. (2004). Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 17: 359-366 https://doi.org/10.1016/j.nbd.2004.07.012
  3. Clark WM, Calcagno FA, Gabler WL, Smith JR, Coull BM. (1994). Reduction of central nervous system reperfusion injury in rabbits using doxycycline treatment. Stroke 25: 1411-1415 https://doi.org/10.1161/01.STR.25.7.1411
  4. Corsani L, Bizzoco E, Pedata F, Gianfriddo M, Faussone-Pellegrini MS, Vannucchi MG. (2008). Inducible nitric oxide synthase appears and is co-expressed with the neuronal isoform in interneurons of the rat hippocampus after transient ischemia induced by middle cerebral artery occlusion. Exp Neurol 211: 433-440 https://doi.org/10.1016/j.expneurol.2008.02.008
  5. Dugan LL, Bruno VM, Amagasu SM, Giffard RG. (1995). Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity. J Neurosci 15: 4545-4555
  6. Flavin MP, Coughlin K, Ho LT. (1997). Soluble macrophage factors trigger apoptosis in cultured hippocampal neurons. Neuroscience 80: 437-448 https://doi.org/10.1016/S0306-4522(97)00078-X
  7. Flavin MP, Ho LT. (1999). Propentofylline protects neurons in culture from death triggered by macrophage or microglial secretory products. J Neurosci Res 56: 54-59 https://doi.org/10.1002/(SICI)1097-4547(19990401)56:1<54::AID-JNR7>3.0.CO;2-2
  8. Flavin MP, Zhao G. (2001). Tissue plasminogen activator protects hippocampal neurons from oxygen-glucose deprivation injury. J Neurosci Res 63: 388-394 https://doi.org/10.1002/1097-4547(20010301)63:5<388::AID-JNR1033>3.0.CO;2-T
  9. Flavin MP, Zhao G, Ho LT. (2000). Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29: 347-354 https://doi.org/10.1002/(SICI)1098-1136(20000215)29:4<347::AID-GLIA5>3.0.CO;2-8
  10. Gordon PH, Moore DH, Miller RG, et al. (2007). Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 6: 1045-1053 https://doi.org/10.1016/S1474-4422(07)70270-3
  11. Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA. (2002). Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22: 3921-3928
  12. Lampl Y, Boaz M, Gilad R, et al. (2007). Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69: 1404-1410 https://doi.org/10.1212/01.wnl.0000277487.04281.db
  13. Lee JE, Yenari MA, Sun GH, et al. (2001). Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 170: 129-139 https://doi.org/10.1006/exnr.2000.7614
  14. Liu T, Clark RK, McDonnell PC, et al. (1994). Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 25: 1481-1488 https://doi.org/10.1161/01.STR.25.7.1481
  15. Siao CJ, Fernandez SR, Tsirka SE. (2003). Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci 23: 3234-3242
  16. Stoll G, Jander S, Schroeter M. (2002). Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol 513: 87-113 https://doi.org/10.1007/978-1-4615-0123-7_3
  17. Tang XN, Wang Q, Koike MA, et al. (2007). Monitoring the protective effects of minocycline treatment with radiolabeled annexin V in an experimental model of focal cerebral ischemia. J Nucl Med 48: 1822-1828 https://doi.org/10.2967/jnumed.107.041335
  18. Tikka TM, Koistinaho JE. (2001). Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 166: 7527-7533. https://doi.org/10.4049/jimmunol.166.12.7527
  19. Wang Q, Tang XN, Yenari MA. (2007). The inflammatory response in stroke. J Neuroimmunol 184: 53-68 https://doi.org/10.1016/j.jneuroim.2006.11.014
  20. Wang X, Zhu S, Drozda M, et al. (2003). Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proc Natl Acad Sci U S A 100: 10483-10487 https://doi.org/10.1073/pnas.1832501100
  21. Yenari MA, Giffard RG. (2001). Ischemic vulnerability of primary murine microglial cultures. Neurosci Lett 298: 5-8 https://doi.org/10.1016/S0304-3940(00)01724-9
  22. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG. (2006). Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37: 1087-1093 https://doi.org/10.1161/01.STR.0000206281.77178.ac
  23. Ying W, Han SK, Miller JW, Swanson RA. (1999). Acidosis potentiates oxidative neuronal death by multiple mechanisms. J Neurochem 73: 1549-1556
  24. Yrjanheikki J, Keinänen R, Pellikka M, Hokfelt T, Koistinaho J. (1998). Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95: 15769-15774 https://doi.org/10.1073/pnas.95.26.15769
  25. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. (1999). A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 96: 13496-13500 https://doi.org/10.1073/pnas.96.23.13496
  26. Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA. (2008). Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28: 53-63 https://doi.org/10.1038/sj.jcbfm.9600502
  27. Zhu S, Stavrovskaya IG, Drozda M, et al. (2002). Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417: 74-78 https://doi.org/10.1038/417074a

Cited by

  1. Tetracyclines and pain vol.385, pp.3, 2010, https://doi.org/10.1007/s00210-012-0727-1
  2. SEPARATION DIFFERENCES AMONG PHENYL HYDRIDE, UDC CHOLESTEROL, AND BIDENTATE C8 STATIONARY PHASES FOR STABILITY INDICATING METHODS OF TETRACYCLINES vol.36, pp.7, 2013, https://doi.org/10.1080/10826076.2012.678457
  3. Triggering Receptor Expressed on Myeloid Cells-2 Correlates to Hypothermic Neuroprotection in Ischemic Stroke vol.3, pp.4, 2010, https://doi.org/10.1089/ther.2013.0020
  4. Minocycline Alleviates Sevoflurane-Induced Cognitive Impairment in Aged Rats vol.35, pp.4, 2010, https://doi.org/10.1007/s10571-014-0154-6
  5. Systems Biology of Immunomodulation for Post-Stroke Neuroplasticity: Multimodal Implications of Pharmacotherapy and Neurorehabilitation vol.7, pp.None, 2010, https://doi.org/10.3389/fneur.2016.00094
  6. Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processin vol.7, pp.None, 2016, https://doi.org/10.3389/fphar.2016.00367
  7. Central nervous system myeloid cells as drug targets: current status and translational challenges vol.15, pp.2, 2016, https://doi.org/10.1038/nrd.2015.14
  8. Bullatine A stimulates spinal microglial dynorphin A expression to produce anti-hypersensitivity in a variety of rat pain models vol.13, pp.None, 2016, https://doi.org/10.1186/s12974-016-0696-2
  9. Microglia after Seizures and in Epilepsy vol.7, pp.4, 2010, https://doi.org/10.3390/cells7040026
  10. Minocycline promotes posthemorrhagic neurogenesis via M2 microglia polarization via upregulation of the TrkB/BDNF pathway in rats vol.120, pp.3, 2018, https://doi.org/10.1152/jn.00234.2018
  11. Minocycline protects against myocardial ischemia/reperfusion injury in rats by upregulating MCPIP1 to inhibit NF-κB activation vol.40, pp.8, 2010, https://doi.org/10.1038/s41401-019-0214-z
  12. Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets vol.9, pp.11, 2010, https://doi.org/10.3390/brainsci9110318
  13. Minocycline fails to improve neurologic and histologic outcome after ventricular fibrillation cardiac arrest in rats vol.8, pp.7, 2010, https://doi.org/10.5492/wjccm.v8.i7.106
  14. Microglial depletion aggravates the severity of acute and chronic seizures in mice vol.89, pp.None, 2020, https://doi.org/10.1016/j.bbi.2020.06.028
  15. Seizure progression triggered by IQSEC3 loss is mitigated by reducing activated microglia in mice vol.68, pp.12, 2010, https://doi.org/10.1002/glia.23876
  16. Neuroinflammatory contribution of microglia and astrocytes in fetal alcohol spectrum disorders vol.99, pp.8, 2010, https://doi.org/10.1002/jnr.24735