Acknowledgement
Supported by : Chonnam National University
References
- Catron KM, Zhang H, Marshall SC, Inostroza JA, Wilson JM, Abate C. (1995). Transcriptional repression by Msx-1 does not require homeodomain DNA-binding sites. Mol Cell Biol 15: 861-871 https://doi.org/10.1128/MCB.15.2.861
- Chariot A, van Lint C, Chapelier M, Gielen J, Merville MP, Bours V. (1999). CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein. Oncogene 18: 4007-4014 https://doi.org/10.1038/sj.onc.1202776
- Economides KD, Capecchi MR. (2003). Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development 130: 2061-2069 https://doi.org/10.1242/dev.00432
- Economides KD, Zeltser L, Capecchi MR. (2003). Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae. Dev Biol 256: 317-330 https://doi.org/10.1016/S0012-1606(02)00137-9
- Edwards S, Campbell C, Flohr P, et al. (2005). Expression analysis onto microarrays of randomly selected cDNA clones highlights HOXB13 as a marker of human prostate cancer. Br J Cancer 92: 376-381 https://doi.org/10.1038/sj.bjc.6602261
- Hood L, Heath JR, Phelps ME, Lin B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science 306: 640-643 https://doi.org/10.1126/science.1104635
- Jung C, Kim RS, Lee SJ, Wang C, Jeng MH. (2004a). HOXB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T-cell factor 4. Cancer Res 64: 3046-3051 https://doi.org/10.1158/0008-5472.CAN-03-2614
- Jung C, Kim RS, Zhang HJ, Lee SJ, Jeng MH. (2004b). HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling. Cancer Res 64: 9185-9192 https://doi.org/10.1158/0008-5472.CAN-04-1330
- Kim YR, Oh KJ, Park RY, et al. (2010). HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling. Mol Cancer 9: 124 https://doi.org/10.1186/1476-4598-9-124
- Lagorce-Pages C, Paraf F, Dubois S, Belghiti J, Flejou JF. (1998). Expression of CD44 in premalignant and malignant Barrett's oesophagus. Histopathology 32: 7-14 https://doi.org/10.1046/j.1365-2559.1998.00316.x
- Lee SJ, Kim HS, Yu R, et al. (2002). Novel prostate-specific promoter derived from PSA and PSMA enhancers. Mol Ther 6: 415-421 https://doi.org/10.1006/mthe.2002.0682
- Lee SJ, Lee K, Yang X, et al. (2003). NFATc1 with AP-3 site binding specificity mediates gene expression of prostate-specific-membrane-antigen. J Mol Biol 330: 749-760 https://doi.org/10.1016/S0022-2836(03)00640-5
- Levine M, Hoey T. (1988). Homeobox proteins as sequence-specific transcription factors. Cell 55: 537-540 https://doi.org/10.1016/0092-8674(88)90209-7
- Mann RS, Chan SK. (1996). Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet 12: 258-262 https://doi.org/10.1016/0168-9525(96)10026-3
- Podlasek CA, Clemens JQ, Bushman W. (1999a). Hoxa-13 gene mutation results in abnormal seminal vesicle and prostate development. J Urol 161: 1655-1661 https://doi.org/10.1016/S0022-5347(05)68999-9
- Podlasek CA, Duboule D, Bushman W. (1997). Male accessory sex organ morphogenesis is altered by loss of function of Hoxd-13. Dev Dyn 208: 454-465 https://doi.org/10.1002/(SICI)1097-0177(199704)208:4<454::AID-AJA2>3.0.CO;2-H
- Podlasek CA, Seo RM, Clemens JQ, Ma L, Maas RL, Bushman W. (1999b). Hoxa-10 deficient male mice exhibit abnormal development of the accessory sex organs. Dev Dyn 214: 1-12 https://doi.org/10.1002/(SICI)1097-0177(199901)214:1<1::AID-DVDY1>3.0.CO;2-2
- Prins GS, Birch L, Habermann H, et al. (2001). Influence of neonatal estrogens on rat prostate development. Reprod Fertil Dev 13: 241-252 https://doi.org/10.1071/RD00107
- Raman V, Martensen SA, Reisman D, et al. (2000a). Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405: 974-978 https://doi.org/10.1038/35016125
- Raman V, Tamori A, Vali M, Zeller K, Korz D, Sukumar S. (2000b). HOXA5 regulates expression of the progesterone receptor. J Biol Chem 275: 26551-26555 https://doi.org/10.1074/jbc.C000324200
- Schnabel CA, Abate-Shen C. (1996). Repression by HoxA7 is mediated by the homeodomain and the modulatory action of its N-terminal-arm residues. Mol Cell Biol 16: 2678-2688 https://doi.org/10.1128/MCB.16.6.2678
- Shen W, Chrobak D, Krishnan K, Lawrence HJ, Largman C. (2004). HOXB6 protein is bound to CREB-binding protein and represses globin expression in a DNA binding-dependent, PBX interaction-independent process. J Biol Chem 279: 39895-39904 https://doi.org/10.1074/jbc.M404132200
- Shen WF, Chang CP, Rozenfeld S, et al. (1996). Hox homeodomain proteins exhibit selective complex stabilities with Pbx and DNA. Nucleic Acids Res 24: 898-906 https://doi.org/10.1093/nar/24.5.898
- Shen WF, Krishnan K, Lawrence HJ, Largman C. (2001). The HOX homeodomain proteins block CBP histone acetyltransferase activity. Mol Cell Biol 21: 7509-7522 https://doi.org/10.1128/MCB.21.21.7509-7522.2001
- Shen WF, Montgomery JC, Rozenfeld S, et al. (1997). AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol Cell Biol 17: 6448-6458 https://doi.org/10.1128/MCB.17.11.6448
- Sreenath T, Orosz A, Fujita K, Bieberich CJ. (1999). Androgen-independent expression of hoxb-13 in the mouse prostate. Prostate 41: 203-207 https://doi.org/10.1002/(SICI)1097-0045(19991101)41:3<203::AID-PROS8>3.0.CO;2-J
- Takahashi Y, Hamada J, Murakawa K, et al. (2004). Expression profiles of 39 HOX genes in normal human adult organs and anaplastic thyroid cancer cell lines by quantitative real-time RT-PCR system. Exp Cell Res 293: 144-153 https://doi.org/10.1016/j.yexcr.2003.09.024
- Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P. (1997). Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124: 4781-4791
- Wimmel A, Kogan E, Ramaswamy A, Schuermann M. (2001). Variant expression of CD44 in preneoplastic lesions of the lung. Cancer 92: 1231-1236 https://doi.org/10.1002/1097-0142(20010901)92:5<1231::AID-CNCR1442>3.0.CO;2-Z
- Zappavigna V, Sartori D, Mavilio F. (1994). Specificity of HOX protein function depends on DNA-protein and protein-protein interactions, both mediated by the homeo domain. Genes Dev 8: 732-744 https://doi.org/10.1101/gad.8.6.732
- Zeltser L, Desplan C, Heintz N. (1996). Hoxb-13: a new Hox gene in a distant region of the HOXB cluster maintains colinearity. Development 122: 2475-2484
Cited by
- Confirmation of the HOXB13 G84E Germline Mutation in Familial Prostate Cancer vol.21, pp.8, 2010, https://doi.org/10.1158/1055-9965.epi-12-0495
- Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding vol.13, pp.None, 2010, https://doi.org/10.1186/1471-2164-13-355
- HOXB13 Mutation and Prostate Cancer: Studies of Siblings and Aggressive Disease vol.22, pp.4, 2010, https://doi.org/10.1158/1055-9965.epi-12-1154
- HOX genes and their role in the development of human cancers vol.92, pp.8, 2010, https://doi.org/10.1007/s00109-014-1181-y
- HOXB13 regulates the prostate-derived Ets factor: Implications for prostate cancer cell invasion vol.45, pp.2, 2010, https://doi.org/10.3892/ijo.2014.2485
- HOXB13 downregulates intracellular zinc and increases NF-κB signaling to promote prostate cancer metastasis vol.33, pp.37, 2014, https://doi.org/10.1038/onc.2013.404
- Increased Expression of HOXB2 and HOXB13 Proteins is Associated with HPV Infection and Cervical Cancer Progression vol.16, pp.4, 2010, https://doi.org/10.7314/apjcp.2015.16.4.1349
- Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes vol.26, pp.4, 2010, https://doi.org/10.1093/annonc/mdv004
- Identification of Two Novel HOXB13 Germline Mutations in Portuguese Prostate Cancer Patients vol.10, pp.7, 2010, https://doi.org/10.1371/journal.pone.0132728
- Prostate Cancer Germline Variations and Implications for Screening and Treatment vol.8, pp.9, 2010, https://doi.org/10.1101/cshperspect.a030379
- Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis vol.37, pp.3, 2010, https://doi.org/10.1038/onc.2017.330
- Prostate Organogenesis vol.8, pp.7, 2010, https://doi.org/10.1101/cshperspect.a030353
- Prostate Organogenesis vol.8, pp.7, 2010, https://doi.org/10.1101/cshperspect.a030353
- Targeting the BRD4-HOXB13 Coregulated Transcriptional Networks with Bromodomain-Kinase Inhibitors to Suppress Metastatic Castration-Resistant Prostate Cancer vol.17, pp.12, 2010, https://doi.org/10.1158/1535-7163.mct-18-0602
- The Homeobox gene, HOXB13, Regulates a Mitotic Protein-Kinase Interaction Network in Metastatic Prostate Cancers vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-46064-4
- Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies vol.16, pp.1, 2010, https://doi.org/10.1038/s41585-018-0119-5
- Genome-wide analysis of HOXC4 and HOXC6 regulated genes and binding sites in prostate cancer cells vol.15, pp.2, 2010, https://doi.org/10.1371/journal.pone.0228590
- Study on HOXBs of Clear Cell Renal Cell Carcinoma and Detection of New Molecular Target vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/5541423