DOI QR코드

DOI QR Code

Control of neuronal migration through rostral migratory stream in mice

  • Sun, Woong (Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine) ;
  • Kim, Hyun (Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine) ;
  • Moon, Young-Hye (Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine)
  • Received : 2010.11.17
  • Accepted : 2010.12.03
  • Published : 2010.12.30

Abstract

During the nervous system development, immature neuroblasts have a strong potential to migrate toward their destination. In the adult brain, new neurons are continuously generated in the neurogenic niche located near the ventricle, and the newly generated cells actively migrate toward their destination, olfactory bulb, via highly specialized migratory route called rostral migratory stream (RMS). Neuroblasts in the RMS form chains by their homophilic interactions, and the neuroblasts in chains continually migrate through the tunnels formed by meshwork of astrocytes, glial tube. This review focuses on the development and structure of RMS and the regulation of neuroblast migration in the RMS. Better understanding of RMS migration may be crucial for improving functional replacement therapy by supplying endogenous neuronal cells to the injury sites more efficiently.

Keywords

Acknowledgement

Supported by : Brain Research Center of the 21st century Frontier Program in Neuroscience, National Research Foundation of Korea

References

  1. Alonso M, Viollet C, Gabellec MM, Meas-Yedid V, Olivo-Marin JC, Lledo PM. (2006). Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci 26: 10508-10513 https://doi.org/10.1523/JNEUROSCI.2633-06.2006
  2. Andrade N, Komnenovic V, Blake SM, et al. (2007). ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin. Proc Natl Acad Sci U S A 104: 8508-8513 https://doi.org/10.1073/pnas.0611391104
  3. Angot E, Loulier K, Nguyen-Ba-Charvet KT, Gadeau AP, Ruat M, Traiffort E. (2008). Chemoattractive activity of sonic hedgehog in the adult subventricular zone modulates the number of neural precursors reaching the olfactory bulb. Stem Cells 26: 2311-2320 https://doi.org/10.1634/stemcells.2008-0297
  4. Anton ES, Ghashghaei HT, Weber JL, et al. (2004). Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci 7: 1319-1328 https://doi.org/10.1038/nn1345
  5. Balenci L, Saoudi Y, Grunwald D, et al. (2007). IQGAP1 regulates adult neural progenitors in vivo and vascular endothelial growth factor-triggered neural progenitor migration in vitro. J Neurosci 27: 4716-4724 https://doi.org/10.1523/JNEUROSCI.0830-07.2007
  6. Balordi F, Fishell G. (2007). Hedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons. J Neurosci 27: 5936-5947 https://doi.org/10.1523/JNEUROSCI.1040-07.2007
  7. Battista D, Rutishauser U. (2010). Removal of polysialic acid triggers dispersion of subventricularly derived neuroblasts into surrounding CNS tissues. J Neurosci 30: 3995-4003 https://doi.org/10.1523/JNEUROSCI.4382-09.2010
  8. Beard A, Parent A. (2004). Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res 151: 159-168 https://doi.org/10.1016/j.devbrainres.2004.03.021
  9. Belvindrah R, Hankel S, Walker J, Patton BL, Muller U. (2007). Beta1 integrins control the formation of cell chains in the adult rostral migratory stream. J Neurosci 27: 2704-2717 https://doi.org/10.1523/JNEUROSCI.2991-06.2007
  10. Blake SM, Strasser V, Andrade N, et al. (2008). Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J 27: 3069-3080 https://doi.org/10.1038/emboj.2008.223
  11. Bolteus AJ, Bordey A. (2004). GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24: 7623-7631 https://doi.org/10.1523/JNEUROSCI.1999-04.2004
  12. Boutin C, Schmitz B, Cremer H, Diestel S. (2009). NCAM expression induces neurogenesis in vivo. Eur J Neurosci 30: 1209-1218 https://doi.org/10.1111/j.1460-9568.2009.06928.x
  13. Bovetti S, Bovolin P, Perroteau I, Puche AC. (2007). Subventricular zone-derived neuroblast migration to the olfactory bulb is modulated by matrix remodelling. Eur J Neurosci 25: 2021-2033 https://doi.org/10.1111/j.1460-9568.2007.05441.x
  14. Buss RR, Sun W, Oppenheim RW. (2006). Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci 29: 1-35 https://doi.org/10.1146/annurev.neuro.29.051605.112800
  15. Cayre M, Bancila M, Virard I, Borges A, Durbec P. (2006). Migrating and myelinating potential of subventricular zone neural progenitor cells in white matter tracts of the adult rodent brain. Mol Cell Neurosci 31: 748-758 https://doi.org/10.1016/j.mcn.2006.01.004
  16. Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H. (2000). Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20: 1446-1457
  17. Chiaramello S, Dalmasso G, Bezin L, et al. (2007). BDNF/TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways. Eur J Neurosci 26: 1780-1790 https://doi.org/10.1111/j.1460-9568.2007.05818.x
  18. Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, Alvarez-Buylla A. (2000). Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 3: 1091-1097 https://doi.org/10.1038/80606
  19. Coskun V, Luskin MB. (2002). Intrinsic and extrinsic regulation of the proliferation and differentiation of cells in the rodent rostral migratory stream. J Neurosci Res 69: 795-802 https://doi.org/10.1002/jnr.10336
  20. Cremer H, Lange R, Christoph A, et al. (1994). Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367: 455-459 https://doi.org/10.1038/367455a0
  21. Curtis MA, Kam M, Nannmark U, et al. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315: 1243-1249 https://doi.org/10.1126/science.1136281
  22. Doetsch F. (2003). A niche for adult neural stem cells. Curr Opin Genet Dev 13: 543-550 https://doi.org/10.1016/j.gde.2003.08.012
  23. Emsley JG, Hagg T. (2003). alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp Neurol 183: 273-285 https://doi.org/10.1016/S0014-4886(03)00209-7
  24. Eom TY, Li J, Anton ES. (2010). Going tubular in the rostral migratory stream: neurons remodel astrocyte tubes to promote directional migration in the adult brain. Neuron 67: 173-175 https://doi.org/10.1016/j.neuron.2010.07.013
  25. Garzotto D, Giacobini P, Crepaldi T, Fasolo A, De Marchis S. (2008). Hepatocyte growth factor regulates migration of olfactory interneuron precursors in the rostral migratory stream through Met-Grb2 coupling. J Neurosci 28: 5901-5909 https://doi.org/10.1523/JNEUROSCI.1083-08.2008
  26. Gascon E, Vutskits L, Jenny B, Durbec P, Kiss JZ. (2007). PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 134: 1181-1190 https://doi.org/10.1242/dev.02808
  27. Giachino C, Taylor V. (2009). Lineage analysis of quiescent regenerative stem cells in the adult brain by genetic labelling reveals spatially restricted neurogenic niches in the olfactory bulb. Eur J Neurosci 30: 9-24 https://doi.org/10.1111/j.1460-9568.2009.06798.x
  28. Gotts JE, Chesselet MF. (2005). Migration and fate of newly born cells after focal cortical ischemia in adult rats. J Neurosci Res 80: 160-171 https://doi.org/10.1002/jnr.20434
  29. Gritti A, Bonfanti L, Doetsch F, et al. (2002). Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22: 437-445
  30. Grubb MS, Nissant A, Murray K, Lledo PM. (2008). Functional maturation of the first synapse in olfaction: development and adult neurogenesis. J Neurosci 28: 2919-2932 https://doi.org/10.1523/JNEUROSCI.5550-07.2008
  31. Hack I, Bancila M, Loulier K, Carroll P, Cremer H. (2002). Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5: 939-945 https://doi.org/10.1038/nn923
  32. Hack MA, Saghatelyan A, de Chevigny A, et al. (2005). Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8: 865-872 https://doi.org/10.1038/nn1479
  33. Hatten ME. (1999). Central nervous system neuronal migration. Annu Rev Neurosci 22: 511-539 https://doi.org/10.1146/annurev.neuro.22.1.511
  34. Hu H, Tomasiewicz H, Magnuson T, Rutishauser U. (1996). The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16: 735-743 https://doi.org/10.1016/S0896-6273(00)80094-X
  35. Hurtado-Chong A, Yusta-Boyo MJ, Vergano-Vera E, Bulfone A, de Pablo F, Vicario-AbejOn C. (2009). IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur J Neurosci 30: 742-755 https://doi.org/10.1111/j.1460-9568.2009.06870.x
  36. Jablonska B, Aguirre A, Raymond M, et al. (2010). Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci 13: 541-550 https://doi.org/10.1038/nn.2536
  37. Jankovski A, Garcia C, Soriano E, Sotelo C. (1998). Proliferation, migration and differentiation of neuronal progenitor cells in the adult mouse subventricular zone surgically separated from its olfactory bulb. Eur J Neurosci 10: 3853-3868 https://doi.org/10.1046/j.1460-9568.1998.00397.x
  38. Jung AR, Kim TW, Rhyu IJ, et al. (2008). Misplacement of Purkinje cells during postnatal development in Bax knock-out mice: a novel role for programmed cell death in the nervous system? J Neurosci 28: 2941-2948 https://doi.org/10.1523/JNEUROSCI.3897-07.2008
  39. Kaneko N, Marin O, Koike M, et al. (2010). New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron 67: 213-223. https://doi.org/10.1016/j.neuron.2010.06.018
  40. Kessenbrock K, Plaks V, Werb Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141: 52-67 https://doi.org/10.1016/j.cell.2010.03.015
  41. Kim HM, Qu T, Kriho V, et al. (2002). Reelin function in neural stem cell biology. Proc Natl Acad Sci U S A 99: 4020-4025 https://doi.org/10.1073/pnas.062698299
  42. Kim WR, Kim Y, Eun B, et al. (2007). Impaired migration in the rostral migratory stream but spared olfactory function after the elimination of programmed cell death in Bax knock-out mice. J Neurosci 27: 14392-14403 https://doi.org/10.1523/JNEUROSCI.3903-07.2007
  43. Kirschenbaum B, Doetsch F, Lois C, Alvarez-Buylla A. (1999). Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J Neurosci 19: 2171-2180
  44. Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A. (2005). Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25: 6997-7003 https://doi.org/10.1523/JNEUROSCI.1435-05.2005
  45. Kohwi M, Petryniak MA, Long JE, et al. (2007). A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27: 6878-6891 https://doi.org/10.1523/JNEUROSCI.0254-07.2007
  46. Kornack DR, Rakic P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci U S A 98: 4752-4757 https://doi.org/10.1073/pnas.081074998
  47. Law AK, Pencea V, Buck CR, Luskin MB. (1999). Neurogenesis and neuronal migration in the neonatal rat forebrain anterior subventricular zone do not require GFAP-positive astrocytes. Dev Biol 216: 622-634 https://doi.org/10.1006/dbio.1999.9498
  48. Lee SR, Kim HY, Rogowska J, et al. (2006). Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26: 3491-3495 https://doi.org/10.1523/JNEUROSCI.4085-05.2006
  49. Li WL, Yu SP, Ogle ME, Ding XS, Wei L. (2008). Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice. Dev Neurobiol 68: 1474-1486 https://doi.org/10.1002/dneu.20674
  50. Liu G, Rao Y. (2003). Neuronal migration from the forebrain to the olfactory bulb requires a new attractant persistent in the olfactory bulb. J Neurosci 23: 6651-6659
  51. Liu Z, Martin LJ. (2003). Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human. J Comp Neurol 459: 368-391 https://doi.org/10.1002/cne.10664
  52. Lledo PM, Merkle FT, Alvarez-Buylla A. (2008). Origin and function of olfactory bulb interneuron diversity. Trends Neurosci 31: 392-400 https://doi.org/10.1016/j.tins.2008.05.006
  53. Lois C, Alvarez-Buylla A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science 264: 1145-1148 https://doi.org/10.1126/science.8178174
  54. Lois C, García-Verdugo JM, Alvarez-Buylla A. (1996). Chain migration of neuronal precursors. Science 271: 978-981 https://doi.org/10.1126/science.271.5251.978
  55. Mackay-Sima A, Chuahb MI. (2000). Neurotrophic factors in the primary olfactory pathway. Prog Neurobiol 62: 527-559 https://doi.org/10.1016/S0301-0082(00)00009-5
  56. Maina F, Klein R. (1999). Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 2: 213-217 https://doi.org/10.1038/6310
  57. Mandairon N, Jourdan F, Didier A. (2003). Deprivation of sensory inputs to the olfactory bulb up-regulates cell death and proliferation in the subventricular zone of adult mice. Neuroscience 119: 507-516 https://doi.org/10.1016/S0306-4522(03)00172-6
  58. Mandairon N, Sacquet J, Jourdan F, Didier A. (2006). Long-term fate and distribution of newborn cells in the adult mouse olfactory bulb: Influences of olfactory deprivation. Neuroscience 141: 443-451 https://doi.org/10.1016/j.neuroscience.2006.03.066
  59. Marins M, Xavier AL, Viana NB, Fortes FS, FrOes MM, Menezes JR. (2009). Gap junctions are involved in cell migration in the early postnatal subventricular zone. Dev Neurobiol 69: 715-730 https://doi.org/10.1002/dneu.20737
  60. Marshall CA, Novitch BG, Goldman JE. (2005). Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J Neurosci 25: 7289-7298 https://doi.org/10.1523/JNEUROSCI.1924-05.2005
  61. Mason HA, Ito S, Corfas G. (2001). Extracellular signals that regulate the tangential migration of olfactory bulb neuronal precursors: inducers, inhibitors, and repellents. J Neurosci 21: 7654-7663
  62. Merkle FT, Mirzadeh Z, Alvarez-Buylla A. (2007). Mosaic organization of neural stem cells in the adult brain. Science 317: 381-384 https://doi.org/10.1126/science.1144914
  63. Miragall F, Albiez P, Bartels H, de Vries U, Dermietzel R. (1997). Expression of the gap junction protein connexin43 in the subependymal layer and the rostral migratory stream of the mouse: evidence for an inverse correlation between intensity of connexin43 expression and cell proliferation activity. Cell Tissue Res 287: 243-253 https://doi.org/10.1007/s004410050749
  64. Mizrahi A. (2007). Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb. Nat Neurosci 10: 444-452 https://doi.org/10.1038/nn1875
  65. Mouret A, Gheusi G, Gabellec MM, de Chaumont F, Olivo-Marin JC, Lledo PM. (2008). Learning and survival of newly generated neurons: when time matters. J Neurosci 28: 11511-11516 https://doi.org/10.1523/JNEUROSCI.2954-08.2008
  66. Murase S, Cho C, White JM, Horwitz AF. (2008). ADAM2 promotes migration of neuroblasts in the rostral migratory stream to the olfactory bulb. Eur J Neurosci 27: 1585-1595 https://doi.org/10.1111/j.1460-9568.2008.06119.x
  67. Murase S, Horwitz AF. (2002). Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J Neurosci 22: 3568-3579
  68. Nam SC, Kim Y, Dryanovski D, et al. (2007). Dynamic features of postnatal subventricular zone cell motility: a two-photon time-lapse study. J Comp Neurol 505: 190-208 https://doi.org/10.1002/cne.21473
  69. Nguyen-Ba-Charvet KT, Picard-Riera N, Tessier-Lavigne M, Baron-Van Evercooren A, Sotelo C, Chedotal A. (2004). Multiple roles for slits in the control of cell migration in the rostral migratory stream. J Neurosci 24: 1497-1506 https://doi.org/10.1523/JNEUROSCI.4729-03.2004
  70. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. (2006). VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7: 359-371 https://doi.org/10.1038/nrm1911
  71. Ono K, Takebayashi H, Ikenaka K. (2009). Olig2 transcription factor in the developing and injured forebrain; cell lineage and glial development. Mol Cells 27: 397-401 https://doi.org/10.1007/s10059-009-0067-2
  72. Panzanelli P, Bardy C, Nissant A, et al. (2009). Early synapse formation in developing interneurons of the adult olfactory bulb. J Neurosci 29: 15039-15052 https://doi.org/10.1523/JNEUROSCI.3034-09.2009
  73. Paratcha G, Ibanez CF, Ledda F. (2006). GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol Cell Neurosci 31: 505-514 https://doi.org/10.1016/j.mcn.2005.11.007
  74. Pencea V, Bingaman KD, Freedman LJ, Luskin MB. (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172: 1-16 https://doi.org/10.1006/exnr.2001.7768
  75. Pencea V, Luskin MB. (2003). Prenatal development of the rodent rostral migratory stream. J Comp Neurol 463: 402-418 https://doi.org/10.1002/cne.10746
  76. Petreanu L, Alvarez-Buylla A. (2002). Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22: 6106-6113
  77. Platel JC, Dave KA, Bordey A. (2008). Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. J Physiol 586: 3739-3743 https://doi.org/10.1113/jphysiol.2008.155325
  78. Powell EM, Mars WM, Levitt P. (2001). Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron 30: 79-89 https://doi.org/10.1016/S0896-6273(01)00264-1
  79. Rice DS, Curran T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24: 1005-1039 https://doi.org/10.1146/annurev.neuro.24.1.1005
  80. Rochefort C, Gheusi G, Vincent JD, Lledo PM. (2002). Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 22: 2679-2689
  81. Russo VC, Gluckman PD, Feldman EL, Werther GA. (2005). The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 26: 916-943 https://doi.org/10.1210/er.2004-0024
  82. Saghatelyan A, de Chevigny A, Schachner M, Lledo PM. (2004). Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nat Neurosci 7: 347-356 https://doi.org/10.1038/nn1211
  83. Saghatelyan A, Roux P, Migliore M, et al. (2005). Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron 46: 103-116 https://doi.org/10.1016/j.neuron.2005.02.016
  84. Saino-Saito S, Cave JW, Akiba Y, (2007). ER81 and CaMKIV identify anatomically and phenotypically defined subsets of mouse olfactory bulb interneurons. J Comp Neurol 502: 485-496 https://doi.org/10.1002/cne.21293
  85. Sawamoto K, Wichterle H, Gonzalez-Perez O, et al. (2006). New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311: 629-632 https://doi.org/10.1126/science.1119133
  86. Simo S, Pujadas L, Segura MF, et al. (2007). Reelin induces the detachment of postnatal subventricular zone cells and the expression of the Egr-1 through Erk1/2 activation. Cereb Cortex 17: 294-303 https://doi.org/10.1093/cercor/bhj147
  87. Snapyan M, Lemasson M, Brill MS, et al. (2009). Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J Neurosci 29: 4172-4188 https://doi.org/10.1523/JNEUROSCI.4956-08.2009
  88. Soria JM, Taglialatela P, Gil-Perotin S, et al. (2004). Defective postnatal neurogenesis and disorganization of the rostral migratory stream in absence of the Vax1 homeobox gene. J Neurosci 24: 11171-11181 https://doi.org/10.1523/JNEUROSCI.3248-04.2004
  89. Staquicini FI, Dias-Neto E, Li J, et al. (2009). Discovery of a functional protein complex of netrin-4, laminin gamma1 chain, and integrin alpha6beta1 in mouse neural stem cells. Proc Natl Acad Sci U S A 106: 2903-2908 https://doi.org/10.1073/pnas.0813286106
  90. Sun W, Funakoshi H, Nakamura T. (2002a). Localization and functional role of hepatocyte growth factor (HGF) and its receptor c-met in the rat developing cerebral cortex. Brain Res Mol Brain Res 103: 36-48 https://doi.org/10.1016/S0169-328X(02)00168-7
  91. Sun W, Funakoshi H, Nakamura T. (2002b). Overexpression of HGF retards disease progression and prolongs life span in a transgenic mouse model of ALS. J Neurosci 22: 6537-6548
  92. Waclaw RR, Wang B, Pei Z, Ehrman LA, Campbell K. (2009). Distinct temporal requirements for the homeobox gene Gsx2 in specifying striatal and olfactory bulb neuronal fates. Neuron 63: 451-465 https://doi.org/10.1016/j.neuron.2009.07.015
  93. Whitman MC, Fan W, Rela L, Rodriguez-Gil DJ, Greer CA. (2009). Blood vessels form a migratory scaffold in the rostral migratory stream. J Comp Neurol 516: 94-104 https://doi.org/10.1002/cne.22093
  94. Whitman MC, Greer CA. (2009). Adult neurogenesis and the olfactory system. Prog Neurobiol 89: 162-175 https://doi.org/10.1016/j.pneurobio.2009.07.003
  95. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG. (2002). Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16: 1681-1689 https://doi.org/10.1046/j.1460-9568.2002.02238.x
  96. Wittko IM, Schanzer A, Kuzmichev A, et al. (2009). VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 29: 8704-8714 https://doi.org/10.1523/JNEUROSCI.5527-08.2009
  97. Yamaguchi M, Mori K. (2005). Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc Natl Acad Sci U S A 102: 9697-9702 https://doi.org/10.1073/pnas.0406082102
  98. Yamashita T, Ninomiya M, Hernández Acosta P, et al. (2006). Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26: 6627-6636 https://doi.org/10.1523/JNEUROSCI.0149-06.2006
  99. Yang H, Jensen P, Goldowitz D. (2002). The community effect and Purkinje cell migration in the cerebellar cortex: analysis of scrambler chimeric mice. J Neurosci 22: 464-470
  100. Zhang SC. (2001). Defining glial cells during CNS development. Nat Rev Neurosci 2: 840-843 https://doi.org/10.1038/35097593
  101. Zigova T, Pencea V, Betarbet R, et al. (1998). Neuronal progenitor cells of the neonatal subventricular zone differentiate and disperse following transplantation into the adult rat striatum. Cell Transplant 7: 137-156 https://doi.org/10.1016/S0963-6897(98)00009-8

Cited by

  1. The PACAP-Regulated Gene Selenoprotein T Is Highly Induced in Nervous, Endocrine, and Metabolic Tissues during Ontogenetic and Regenerative Processes vol.152, pp.11, 2010, https://doi.org/10.1210/en.2011-1246
  2. Expression of ezrin in subventricular zone neural stem cells and their progeny in adult and developing mice vol.139, pp.3, 2010, https://doi.org/10.1007/s00418-012-1048-7
  3. KCa3.1 Modulates Neuroblast Migration Along the Rostral Migratory Stream (RMS) In Vivo vol.24, pp.9, 2014, https://doi.org/10.1093/cercor/bht090
  4. The E3 ubiquitin ligase Mycbp2 genetically interacts with Robo2 to modulate axon guidance in the mouse olfactory system vol.219, pp.3, 2010, https://doi.org/10.1007/s00429-013-0540-8
  5. Phosphatase and actin regulator 4 is associated with intermediate filaments in adult neural stem cells and their progenitor astrocytes vol.142, pp.4, 2010, https://doi.org/10.1007/s00418-014-1220-3
  6. Collective Cell Migration: “All for One and One for All” vol.28, pp.3, 2010, https://doi.org/10.3109/01677063.2014.896911
  7. Development of Circadian Oscillators in Neurosphere Cultures during Adult Neurogenesis vol.10, pp.3, 2010, https://doi.org/10.1371/journal.pone.0122937
  8. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche vol.25, pp.10, 2010, https://doi.org/10.1093/cercor/bhu253
  9. Perinatal Exposure to Glufosinate Ammonium Herbicide Impairs Neurogenesis and Neuroblast Migration through Cytoskeleton Destabilization vol.10, pp.None, 2016, https://doi.org/10.3389/fncel.2016.00191
  10. BRD4 is associated with raccoon polyomavirus genome and mediates viral gene transcription and maintenance of a stem cell state in neuroglial tumour cells vol.97, pp.11, 2010, https://doi.org/10.1099/jgv.0.000594
  11. Decoding Crucial LncRNAs Implicated in Neurogenesis and Neurological Disorders vol.26, pp.8, 2017, https://doi.org/10.1089/scd.2016.0290
  12. Explant Methodology for Analyzing Neuroblast Migration vol.7, pp.9, 2010, https://doi.org/10.21769/bioprotoc.2249
  13. Evidence of a Cell Surface Role for Hsp90 Complex Proteins Mediating Neuroblast Migration in the Subventricular Zone vol.11, pp.None, 2010, https://doi.org/10.3389/fncel.2017.00138
  14. Rostro-Caudal and Caudo-Rostral Migrations in the Telencephalon: Going Forward or Backward? vol.11, pp.None, 2010, https://doi.org/10.3389/fnins.2017.00692
  15. A Meta-Analysis Characterizing Stem-Like Gene Expression in the Suprachiasmatic Nucleus and Its Circadian Clock vol.2018, pp.None, 2010, https://doi.org/10.1155/2018/3610603
  16. Redirection of neuroblast migration from the rostral migratory stream into a lesion in the prefrontal cortex of adult rats vol.236, pp.4, 2010, https://doi.org/10.1007/s00221-018-5209-3
  17. New Neurons in the Post-ischemic and Injured Brain: Migrating or Resident? vol.13, pp.None, 2010, https://doi.org/10.3389/fnins.2019.00588
  18. Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs vol.13, pp.1, 2010, https://doi.org/10.1088/1758-5090/abc1be