DOI QR코드

DOI QR Code

Re-engineering the mitochondrial genomes in mammalian cells

  • Yoon, Young-Geol (Mitochondria Hub Regulation Center and Department of Anatomy and Cell Biology, Dong-A University) ;
  • Koob, Michael D. (Institute of Human Genetics and Department of Laboratory Medicine and Pathology, University of Minnesota) ;
  • Yoo, Young-Hyun (Mitochondria Hub Regulation Center and Department of Anatomy and Cell Biology, Dong-A University)
  • Received : 2010.04.23
  • Accepted : 2010.05.25
  • Published : 2010.06.30

Abstract

Mitochondria are subcellular organelles composed of two discrete membranes in the cytoplasm of eukaryotic cells. They have long been recognized as the generators of energy for the cell and also have been known to associate with several metabolic pathways that are crucial for cellular function. Mitochondria have their own genome, mitochondrial DNA (mtDNA), that is completely separated and independent from the much larger nuclear genome, and even have their own system for making proteins from the genes in this mtDNA genome. The human mtDNA is a small (~16.5 kb) circular DNA and defects in this genome can cause a wide range of inherited human diseases. Despite of the significant advances in discovering the mtDNA defects, however, there are currently no effective therapies for these clinically devastating diseases due to the lack of technology for introducing specific modifications into the mitochondrial genomes and for generating accurate mtDNA disease models. The ability to engineer the mitochondrial genomes would provide a powerful tool to create mutants with which many crucial experiments can be performed in the basic mammalian mitochondrial genetic studies as well as in the treatment of human mtDNA diseases. In this review we summarize the current approaches associated with the correction of mtDNA mutations in cells and describe our own efforts for introducing engineered mtDNA constructs into the mitochondria of living cells through bacterial conjugation.

Keywords

Acknowledgement

Supported by : National Institutes of Health, National Research Foundation of Korea

References

  1. Alam TI, Kanki T, Muta T, et al. (2003). Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31: 1640-1645 https://doi.org/10.1093/nar/gkg251
  2. Alexeyev MF, Venediktova N, Pastukh V, Shokolenko I, Bonilla G, Wilson GL. (2008). Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther 15: 516-523 https://doi.org/10.1038/gt.2008.11
  3. Becker S, Th eile S, Heppeler N, et al. (2005). A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Lett 579: 1177-1182 https://doi.org/10.1016/j.febslet.2004.12.087
  4. Boddapati SV, Tongcharoensirikul P, Hanson RN, D'Souza GG, Torchilin VP, Weissig V. (2005). Mitochondriotropic liposomes. J Liposome Res 15: 49-58 https://doi.org/10.1081/LPR-64958
  5. Castellani R, Hirai K, Aliev G, et al. (2002). Role of mitochondrial dysfunction in Alzheimer's disease. J Neurosci Res 70: 357-360 https://doi.org/10.1002/jnr.10389
  6. Chen LB, Summerhayes IC, Johnson LV, Walsh ML, Bernal SD, Lampidis TJ. (1982). Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol 46(Pt 1): 141-155 https://doi.org/10.1101/SQB.1982.046.01.018
  7. Clark KM, Brown TA, Davidson MM, Papadopoulou LC, Clayton DA. (2002). Differences in nuclear gene expression between cells containing monomer and dimer mitochondrial genomes. Gene 286: 91-104 https://doi.org/10.1016/S0378-1119(01)00805-8
  8. Collombet JM, Wheeler VC, Vogel F, Coutelle C. (1997). Introduction of plasmid DNA into isolated mitochondria by electroporation. A novel approach toward gene correction for mitochondrial disorders. J Biol Chem 272: 5342-5347 https://doi.org/10.1074/jbc.272.8.5342
  9. DiMauro S, Schon EA. (2001). Mitochondrial DNA mutations in human disease. Am J Med Genet 106: 18-26 https://doi.org/10.1002/ajmg.1392
  10. DiMauro S, Schon EA. (2003). Mitochondrial respiratorychain diseases. N Engl J Med 348: 2656-2668 https://doi.org/10.1056/NEJMra022567
  11. D'Souza GG, Boddapati SV, Weissig V. (2005). Mitochondrial leader sequence--plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5: 352-358 https://doi.org/10.1016/j.mito.2005.07.001
  12. D'Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V. (2003). DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92: 189-197 https://doi.org/10.1016/S0168-3659(03)00297-9
  13. Edgar D, Shabalina I, Camara Y, et al. (2009). Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab 10: 131-138 https://doi.org/10.1016/j.cmet.2009.06.010
  14. Epler JL, Shugart LR, Barnett WE. (1970). N-formylmethionyl transfer ribonucleic acid in mitochondria from Neurospora. Biochemistry 9: 3575-3579 https://doi.org/10.1021/bi00820a011
  15. Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC. (2003). Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol Ther 7: 550-557 https://doi.org/10.1016/S1525-0016(03)00037-6
  16. Fox TD, Sanford JC, McMullin TW. (1988). Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc Natl Acad Sci U S A 85: 7288-7292 https://doi.org/10.1073/pnas.85.19.7288
  17. Frey TG, Mannella CA. (2000). The internal structure of mitochondria. Trends Biochem Sci 25: 319-324 https://doi.org/10.1016/S0968-0004(00)01609-1
  18. Galper JB, Darnell JE. (1969). The presence of N-formylmethionyl-tRNA in HeLa cell mitochondria. Biochem Biophys Res Commun 34: 205-214 https://doi.org/10.1016/0006-291X(69)90633-0
  19. Geromel V, Cao A, Briane D, et al. (2001). Mitochondria transfection by oligonucleotides containing a signal peptide and vectorized by cationic liposomes. Antisense Nucleic Acid Drug Dev 11: 175-180 https://doi.org/10.1089/108729001300338708
  20. Gray MW, Burger G, Lang BF. (1999). Mitochondrial evolution. Science 283: 1476-1481 https://doi.org/10.1126/science.283.5407.1476
  21. Green DR, Reed JC. (1998). Mitochondria and apoptosis. Science 281: 1309-1312 https://doi.org/10.1126/science.281.5381.1309
  22. Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P. (1998). Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 16: 862-866 https://doi.org/10.1038/nbt0998-862
  23. Hashimoto K, Angiolillo P, Rottenberg H. (1984). Membrane potential and surface potential in mitochondria. Binding of a cationic spin probe. Biochim Biophys Acta 764: 55-62 https://doi.org/10.1016/0005-2728(84)90140-3
  24. Heinemann JA, Sprague GF Jr. (1989). Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340: 205-209 https://doi.org/10.1038/340205a0
  25. Holt IJ, Harding AE, Morgan-Hughes JA. (1988). Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717-719 https://doi.org/10.1038/331717a0
  26. Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA. (1988). Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240: 1538-1541 https://doi.org/10.1126/science.2836954
  27. Keeney PM, Quigley CK, Dunham LD, et al. (2009). Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model. Hum Gene Ther 20: 897-907 https://doi.org/10.1089/hum.2009.023
  28. Khan SM, Bennett JP Jr. (2004). Development of mitochondrial gene replacement therapy. J Bioenerg Biomembr 36: 387-393 https://doi.org/10.1023/B:JOBB.0000041773.20072.9e
  29. Kim YG, Cha J, Chandrasegaran S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93: 1156-1160 https://doi.org/10.1073/pnas.93.3.1156
  30. King MP, Attardi G. (1988). Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52: 811-819 https://doi.org/10.1016/0092-8674(88)90423-0
  31. King MP, Attardi G. (1989). Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500-503 https://doi.org/10.1126/science.2814477
  32. Koulintchenko M, Temperley RJ, Mason PA, Dietrich A, Lightowlers RN. (2006). Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum Mol Genet 15: 143-154 https://doi.org/10.1093/hmg/ddi435
  33. Kunik T, Tzfi ra T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98: 1871-1876 https://doi.org/10.1073/pnas.041327598
  34. Lee M, Choi JS, Choi MJ, Pak YK, Rhee BD, Ko KS. (2007). DNA delivery to the mitochondria sites using mitochondrial leader peptide conjugated polyethylenimine. J Drug Target 15: 115-122 https://doi.org/10.1080/10611860600953555
  35. Legros F, Lombes A, Frachon P, Rojo M. (2002). Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13: 4343-4354 https://doi.org/10.1091/mbc.E02-06-0330
  36. Lim YM, de Groof AJ, Bhattacharjee MK, Figurski DH, Schon EA. (2008). Bacterial conjugation in the cytoplasm of mouse cells. Infect Immun 76: 5110-5119 https://doi.org/10.1128/IAI.00445-08
  37. Lu Y, Beavis AD. (1997). Effect of leader peptides on the permeability of mitochondria. J Biol Chem 272: 13555-13561 https://doi.org/10.1074/jbc.272.21.13555
  38. Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A. (2008). Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36: 3926-3938 https://doi.org/10.1093/nar/gkn313
  39. Mukhopadhyay A, Heard TS, Wen X, Hammen PK, Weiner H. (2003). Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space. J Biol Chem 278: 13712-13718 https://doi.org/10.1074/jbc.M212743200
  40. Muratovska A, Lightowlers RN, Taylor RW, et al. (2001). Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease, Nucleic Acids Res 29: 1852-1863 https://doi.org/10.1093/nar/29.9.1852
  41. Nass MM. (1970). Abnormal DNA patterns in animal mitochondria: ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomer accumulation. Proc Natl Acad Sci U S A 67: 1926-1933 https://doi.org/10.1073/pnas.67.4.1926
  42. Nielsen PE, Egholm M, Berg RH, Buchardt O. (1991). Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254: 1497-1500 https://doi.org/10.1126/science.1962210
  43. Nishikawa M, Yoshida K. (1998). Trans-kingdom conjugation off ers a powerful gene targeting tool in yeast. Genet Anal 14: 65-73 https://doi.org/10.1016/S1050-3862(97)10003-1
  44. Panov AV, Gutekunst CA, Leavitt BR, et al. (2002). Early mitochondrial calcium defects in Huntington's disease are a direct eff ect of polyglutamines. Nat Neurosci 5: 731-736 https://doi.org/10.1038/nn884
  45. Parisi MA, Clayton DA. (1991). Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252: 965-969 https://doi.org/10.1126/science.2035027
  46. Perkins GA, Sun MG, Frey TG. (2009). Correlated light and electron microscopy/electron tomography of mitochondria in situ. Methods Enzymol 456: 29-52 https://doi.org/10.1016/S0076-6879(08)04402-9
  47. Piers KL, Heath JD, Liang X, Stephens KM, Nester EW. (1996). Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci U S A 93: 1613-1618 https://doi.org/10.1073/pnas.93.4.1613
  48. Ross MF, Da Ros T, Blaikie FH, et al. (2006). Accumulation of lipophilic dications by mitochondria and cells. Biochem J 400: 199-208 https://doi.org/10.1042/BJ20060919
  49. Rottenberg H. (1984). Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. J Membr Biol 81: 127-138 https://doi.org/10.1007/BF01868977
  50. Saraste M. (1999). Oxidative phosphorylation at the fin de siecle. Science 283: 1488-1493 https://doi.org/10.1126/science.283.5407.1488
  51. Scheffler IE. (2001). Mitochondria make a come back. Adv Drug Deliv Rev 49: 3-26 https://doi.org/10.1016/S0169-409X(01)00123-5
  52. Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H. (1995). Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res 23: 10-17 https://doi.org/10.1093/nar/23.1.10
  53. Shoubridge EA. (2000). A debut for mito-mouse. Nat Genet 26: 132-134 https://doi.org/10.1038/79832
  54. Sinai AP, Bavoil PM. (1993). Hyper-invasive mutants defi ne a novel Pho-regulated invasion pathway in Escherichia coli. Mol Microbiol 10: 1125-1137 https://doi.org/10.1111/j.1365-2958.1993.tb00982.x
  55. Smith RA, Porteous CM, Gane AM, Murphy MP. (2003). Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100: 5407-5412 https://doi.org/10.1073/pnas.0931245100
  56. Srivastava S, Moraes CT. (2001). Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10: 3093-3099 https://doi.org/10.1093/hmg/10.26.3093
  57. Sutton MD, Kaguni JM. (1997). Novel alleles of the Escherichia coli dnaA gene. J Mol Biol 271: 693-703 https://doi.org/10.1006/jmbi.1997.1209
  58. Tanaka M, Borgeld HJ, Zhang J, et al. (2002). Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9: 534-541
  59. Thorburn DR, Dahl HH. (2001). Mitochondrial disorders: genetics, counseling, prenatal diagnosis and reproductive options. Am J Med Genet 106: 102-114 https://doi.org/10.1002/ajmg.1380
  60. Trifunovic A, Wredenberg A, Falkenberg M, et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417-423 https://doi.org/10.1038/nature02517
  61. Vestweber D, Schatz G. (1989). DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 338: 170-172 https://doi.org/10.1038/338170a0
  62. von Heijne G. (1986). Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5: 1335-1342
  63. Wallace DC. (1999). Mitochondrial diseases in man and mouse. Science 283: 1482-1488 https://doi.org/10.1126/science.283.5407.1482
  64. Wallace DC. (2007). Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76: 781-821 https://doi.org/10.1146/annurev.biochem.76.081205.150955
  65. Wallace DC, Singh G, Lott MT, et al. (1988). Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242: 1427-1430 https://doi.org/10.1126/science.3201231
  66. Waters VL. (1999). Conjugative transfer in the dissemination of ${\beta}$-lactam and aminoglycoside resistance. Front Biosci 4: D433-456 https://doi.org/10.2741/Waters
  67. Waters VL. (2001). Conjugation between bacterial and mammalian cells. Nat Genet 29: 375-376 https://doi.org/10.1038/ng779
  68. Waxman DJ, Strominger JL. (1983). Penicillin-binding proteins and the mechanism of action of ${\beta}$-lactam antibiotics. Annu Rev Biochem 52: 825-869 https://doi.org/10.1146/annurev.bi.52.070183.004141
  69. Weissig V, Cheng SM, D'Souza GG. (2004). Mitochondrial pharmaceutics. Mitochondrion 3: 229-244 https://doi.org/10.1016/j.mito.2003.11.002
  70. Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. (1998). DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res 15: 334-337 https://doi.org/10.1023/A:1011991307631
  71. Weissig V, Torchilin VP. (2000). Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr Pharm Biotechnol 1: 325-346 https://doi.org/10.2174/1389201003378870
  72. Wu J, Kandavelou K, Chandrasegaran S. (2007). Customdesigned zinc fi nger nucleases: what is next? Cell Mol Life Sci 64: 2933-2944 https://doi.org/10.1007/s00018-007-7206-8
  73. Yoon YG, Koob MD. (2003). Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria. Nucleic Acids Res 31: 1407-1415 https://doi.org/10.1093/nar/gkg228
  74. Yoon YG, Koob MD. (2005). Transformation of isolated mammalian mitochondria by bacterial conjugation. Nucleic Acids Res 33: e139 https://doi.org/10.1093/nar/gni140
  75. Yoon YG, Koob MD. (2008). Selection by drug resistance proteins located in the mitochondria of mammalian cells. Mitochondrion 8: 345-351 https://doi.org/10.1016/j.mito.2008.07.004
  76. Yoon YG, Yang YW, Koob MD. (2009). PCR-based cloning of the complete mouse mitochondrial genome and stable engineering in Escherichia coli. Biotechnol Lett 31: 1671-1676 https://doi.org/10.1007/s10529-009-0063-9

Cited by

  1. Dynamic regulation of mitochondrial function in preimplantation embryos and embryonic stem cells vol.11, pp.5, 2011, https://doi.org/10.1016/j.mito.2010.12.013
  2. Toward genetic transformation of mitochondria in mammalian cells using a recoded drug-resistant selection marker vol.38, pp.4, 2010, https://doi.org/10.1016/j.jgg.2011.03.005
  3. From Serendipity to Mitochondria-Targeted Nanocarriers vol.28, pp.11, 2011, https://doi.org/10.1007/s11095-011-0556-9
  4. MITO-Porter; A Cutting-edge Technology for Mitochondrial Gene Therapy vol.132, pp.12, 2010, https://doi.org/10.1248/yakushi.12-00235-3
  5. Rapid Isolation of Mitochondrial DNA-Depleted Mammalian Cells by Ethidium Bromide and Dideoxycytidine Treatments vol.57, pp.3, 2010, https://doi.org/10.3839/jabc.2014.042
  6. Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-20064-2
  7. Transfer of Xenomitochondria Containing the Entire Mouse Mitochondrial Genome into a Genetically Modified Yeast Expressing Mitochondrial Transcription Factor A vol.30, pp.9, 2010, https://doi.org/10.4014/jmb.2004.04033
  8. mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.625020
  9. Engineering Genetic Systems for Treating Mitochondrial Diseases vol.13, pp.6, 2010, https://doi.org/10.3390/pharmaceutics13060810