DOI QR코드

DOI QR Code

Analytical Study of the Effect of Material Properties on the Formability of Sheet Metals based on the M-K Model

M-K 모델 기반의 박판금속 성형성 평가에서 물성의 영향에 대한 해석적 연구

  • ;
  • 김석봉 (KAIST 기계항공시스템학부) ;
  • 허훈 (KAIST 기계항공시스템학부)
  • Received : 2010.08.10
  • Accepted : 2010.10.25
  • Published : 2010.11.01

Abstract

This paper investigates the effect of material properties on the formability of sheet metals based on the Marciniak-Kuczynski model (M-K model). The hardening behavior of the material is modeled as the Hollomon model with the strain rate effect. The yield surfaces are constructed with Hosford79 yield function. The material properties considered in this study include the R-value, the strain hardening exponent, the strain rate hardening exponent, and the crystal structure of the material. The effect of the crystal structure on formability is roughly expressed as the change of the yield surface by varying the value of the exponent in Hosford79 yield function. Results show that the R-value affects neither the magnitude nor the shape of right hand side of forming limit diagrams (FLDs). Higher strain hardening exponent and higher strain rate hardening exponent improve the formability of sheet metals because they stabilize the forming processes.

Keywords

References

  1. S. P. Keeler, W. A. Backhofen, 1964, Plastic instability and fracture in sheet stretched over rigid punches, ASM Trans. on Quarterly, Vol. 56, pp. 25-48.
  2. G. M. Goodwin, 1968, Application of strain analysis to sheet metal forming problems in the press shop, In: SAE Tech. Paper, No. 680093.
  3. R. Hill, 1952, On discontinuous plastic states, with special reference to localized necking in thin sheets, J. Mech. Phys. Solids, Vol. 1, pp. 19-30. https://doi.org/10.1016/0022-5096(52)90003-3
  4. H. W. Swift, 1952, Plastic instability under plane stress, J. Mech. Phys. Solids, Vol. 1, pp. 1-18. https://doi.org/10.1016/0022-5096(52)90002-1
  5. S. Storen, J. R. Rice, 1975, Localized necking in the sheets, J. Mech. Phys. Solids, Vol. 23, pp. 421-441. https://doi.org/10.1016/0022-5096(75)90004-6
  6. J. D. Bressan, J. A. Williams, 1983, The use of a shear instability criterion to predict local necking in sheet metal deformation, Int. J. Mech. Sci., Vol. 25, pp. 155-168. https://doi.org/10.1016/0020-7403(83)90089-9
  7. G. Jun, 1990, An extension of shear instability model on localized necking, ICTP, pp. 1293-1298.
  8. Z. Marciniak, K. Kuczynski, 1967, Limit strains in the processes of stretch-forming sheet metal, Int. J. Mech. Sci., Vol. 9, pp. 609-620. https://doi.org/10.1016/0020-7403(67)90066-5
  9. S. P. Keeler, W. G. Brazier, 1975, Relationship between laboratory material characterization and press shop formability, Microalloying 75, New York, pp. 517-530.
  10. K. S. Raghavan, R. C. Van Kuren, H. Darlington, 1992, Recent progress in the development of forming limit curves for automotive sheet steels, SAE920437.
  11. B. S. Levy, 1996, A comparison of empirical forming limit curves for low carbon steel with theoretical forming limit curves of Ramaekers and Bongaerts, IDDRG WG3, Ungarn, pp. 13-14.
  12. A. Parmar, P. B. Mellor, 1978, Prediction of limit strains in sheet metal using a more general yield criterion, Int. J. Mech. Sci. Vol. 20, pp. 385-391. https://doi.org/10.1016/0020-7403(78)90041-3
  13. A. Graf, W. F. Hosford, 1990, Calculations of forming limit diagrams, Metall. Mater. Trans. A, Vol. 21, pp. 87-94. https://doi.org/10.1007/BF02656427
  14. D. Banabic, E. Dannenmann, 2001, Prediction of the influence of yield locus on the limit strains in sheet metals, J. Mater. Process. Technol., Vol. 109, pp. 9-12. https://doi.org/10.1016/S0924-0136(00)00770-6
  15. W. F. Hosford, 1979, On the yield loci of anisotropic cubic metals, 7th North Am. Metalworking Conf., SME, Dearborn, MI, pp. 191-197.
  16. R. Logan, W. F. Hosford, 1980, Upper-bound anisotropic yield locus calculations assuming <111> pencil glide, Int. J. Mech. Sci., Vol. 22, pp. 419-430. https://doi.org/10.1016/0020-7403(80)90011-9

Cited by

  1. Manufacturing Integral Safety Vents in Prismatic Lithium-ion Batteries vol.24, pp.4, 2015, https://doi.org/10.5228/KSTP.24.4.293
  2. Design of integrated safety vent in prismatic lithium-ion battery vol.31, pp.5, 2017, https://doi.org/10.1007/s12206-017-0448-y
  3. Evaluation of Analytical Parameters on Forming Limit Diagram based on Initial Geometrical Instability vol.23, pp.4, 2014, https://doi.org/10.5228/KSTP.2014.23.4.199