References
- Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res. Synop. 1999, 150.
- Seong, M. H.; Choi, S. H.; Lee, Y. W.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2009, 30, 2408. https://doi.org/10.5012/bkcs.2009.30.10.2408
- D'Souza, M. J.; Reed, D. N.; Erdman, K. J.; Kyong, J. B.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 862. https://doi.org/10.3390/ijms10030862
- Lee, S. H.; Rhu, C. J.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657. https://doi.org/10.5012/bkcs.2007.28.4.657
- Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304. https://doi.org/10.1021/jo00301a019
- Kevill, D. N.; Kyong, J. B. J. Org. Chem. 1992, 57, 258. https://doi.org/10.1021/jo00027a046
- Kevill, D. N.; D’Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
- D'Souza, M. J.; Mahon, B. P.; Kevill, D. N. Int. J. Mol. Sci. 2010, 11, 2597. https://doi.org/10.3390/ijms11072597
- Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
- Fainberg, A. H.; Winstein, S. J. J. Am. Chem. Soc. 1956, 78, 2770. https://doi.org/10.1021/ja01593a033
- Well, P. R. Chem. Rev. 1963, 63, 171. https://doi.org/10.1021/cr60222a005
- Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
- Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
- Kevill, D. N.; D'Souza, M. J. J. Chem. Res., Synop. 1993, 174.
- Lomas, J. S.; D'Souza, M. J.; Kevill, D. N. J. Am. Chem. Soc. 1995, 117, 5891. https://doi.org/10.1021/ja00126a045
- Schleyer, P. v. R.; Nicholas, R. D. J. Am. Chem. Soc. 1961, 83, 2700. https://doi.org/10.1021/ja01473a024
- Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667. https://doi.org/10.1021/ja00440a037
- Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
- Kevill, D. N. In Advances in Quantitative Structure-Property Relationship;Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol. 1, pp 81-115.
- Liu, K.-T.; Hou, S.-J.; Tsao, M.-L. J. Org. Chem. 1998, 63, 1360. https://doi.org/10.1021/jo972169+
- Liu, K.-T.; Kou, S.-J.; Tsao, M.-L. J. Chin. Chem. Soc. 2009, 56, 425.
- Choppin, A. R.; Rodgers, J. W. J. Am. Chem. Soc. 1948, 70, 2967. https://doi.org/10.1021/ja01189a040
- Queen, A. Can. J. Chem. 1967, 45, 1619. https://doi.org/10.1139/v67-264
- Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 968.
- Kivinen, A. In The Chemistry of Acyl Halides; Patai, S., Ed.; Interscience: New York, 1972; pp 198-200.
- D'Souza, M. J.; Mahon, B. P.; Kevill, D. N. Int. J. Mol. Sci. 2010, 11, 2597. https://doi.org/10.3390/ijms11072597
- Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop. 1990, 17, 121.
- Kevill, D. N.; D'Souza, M. J. Cur. Org. Chem. 2010, 14, 1037. https://doi.org/10.2174/138527210791130505
- Dang, V. A.; Olofson, R. A.; Wolf, P. R.; Piteau, M. D.; Senet, J-P. G. J. Org. Chem. 1990, 55, 1847. https://doi.org/10.1021/jo00293a032
- Lee, Y. H.; Seong, M. H.; Lee, E. S.; Lee, Y. W.; Won, H.; Kyong, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2010, 31, 1209. https://doi.org/10.5012/bkcs.2010.31.5.1209
Cited by
- Correlation of the Rates of Solvolysis of i-Butyl Fluoroformate and a Consideration of Leaving-Group Effects vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12117806
- Application of the Extended Grunwald-Winstein Equation to the Solvolyses of Phenyl Methanesulfonyl Chloride in Aqueous Binary Mixtures vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1897
- Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2955
- Correlation of the rates of solvolysis of tert-butyl chlorothioformate and observations concerning the reaction mechanism vol.3, pp.3, 2012, https://doi.org/10.5155/eurjchem.3.3.267-272.624
- Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters vol.14, pp.4, 2013, https://doi.org/10.3390/ijms14047286
- Influence of Sulfur for Oxygen Substitution in the Solvolytic Reactions of Chloroformate Esters and Related Compounds vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151018310
- Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates vol.16, pp.12, 2015, https://doi.org/10.3390/ijms160510601
- Correlation of the Rates of Solvolysis of Phenyl Fluorothionoformate vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1268
- Correlation of the Rates of Solvolysis of 1- and 2-Naphthyl Chloroformates Using the Extended Grunwald-Winstein Equation vol.32, pp.7, 2010, https://doi.org/10.5012/bkcs.2011.32.7.2413
- Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions vol.33, pp.11, 2010, https://doi.org/10.5012/bkcs.2012.33.11.3657
- Application of the Extended Grunwald-Winstein Equation to the Solvolyses of 4-(Chlorosulfonyl)biphenyl vol.61, pp.1, 2010, https://doi.org/10.5012/jkcs.2017.61.1.25
- Rate and Product Studies with 1-Adamantyl Chlorothioformate under Solvolytic Conditions vol.22, pp.14, 2021, https://doi.org/10.3390/ijms22147394