DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolysis of t-Butyl Fluoroformate Using the Extended Grunwald-Winstein Equation

  • Lee, Yong-Woo (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Seong, Mi-Hye (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kyong, Jin Burm (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kevill, Dennis N. (Department of Chemistry and Biochemistry, Northern Illinois University)
  • Received : 2010.09.08
  • Accepted : 2010.09.15
  • Published : 2010.11.20

Abstract

The specific rates of solvolysis of t-butyl fluoroformate (1) have been measured at $40.0^{\circ}C$ in 21 pure and binary solvents. These give a satisfactory correlation over the full range of solvents when the extended Grunwald-Winstein equation, with incorporation of the solvent nucleophilicity and the solvent ionizing power, is applied. The actual values are very similar to those obtained in earlier studies of the solvolyses of isopropyl chloroformate and ethyl chlorothioformate in the more ionizing and least nucleophilic solvents, which are believed to proceed by an ionization pathway. The small negative values for the entropies of activation are consistent with the ionization nature of the proposed rate-determining step. These observations are also compared with those previously reported for the corresponding primary and secondary alkyl haloformate esters.

Keywords

References

  1. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res. Synop. 1999, 150.
  2. Seong, M. H.; Choi, S. H.; Lee, Y. W.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2009, 30, 2408. https://doi.org/10.5012/bkcs.2009.30.10.2408
  3. D'Souza, M. J.; Reed, D. N.; Erdman, K. J.; Kyong, J. B.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 862. https://doi.org/10.3390/ijms10030862
  4. Lee, S. H.; Rhu, C. J.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657. https://doi.org/10.5012/bkcs.2007.28.4.657
  5. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304. https://doi.org/10.1021/jo00301a019
  6. Kevill, D. N.; Kyong, J. B. J. Org. Chem. 1992, 57, 258. https://doi.org/10.1021/jo00027a046
  7. Kevill, D. N.; D’Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  8. D'Souza, M. J.; Mahon, B. P.; Kevill, D. N. Int. J. Mol. Sci. 2010, 11, 2597. https://doi.org/10.3390/ijms11072597
  9. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  10. Fainberg, A. H.; Winstein, S. J. J. Am. Chem. Soc. 1956, 78, 2770. https://doi.org/10.1021/ja01593a033
  11. Well, P. R. Chem. Rev. 1963, 63, 171. https://doi.org/10.1021/cr60222a005
  12. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  13. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  14. Kevill, D. N.; D'Souza, M. J. J. Chem. Res., Synop. 1993, 174.
  15. Lomas, J. S.; D'Souza, M. J.; Kevill, D. N. J. Am. Chem. Soc. 1995, 117, 5891. https://doi.org/10.1021/ja00126a045
  16. Schleyer, P. v. R.; Nicholas, R. D. J. Am. Chem. Soc. 1961, 83, 2700. https://doi.org/10.1021/ja01473a024
  17. Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667. https://doi.org/10.1021/ja00440a037
  18. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  19. Kevill, D. N. In Advances in Quantitative Structure-Property Relationship;Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol. 1, pp 81-115.
  20. Liu, K.-T.; Hou, S.-J.; Tsao, M.-L. J. Org. Chem. 1998, 63, 1360. https://doi.org/10.1021/jo972169+
  21. Liu, K.-T.; Kou, S.-J.; Tsao, M.-L. J. Chin. Chem. Soc. 2009, 56, 425.
  22. Choppin, A. R.; Rodgers, J. W. J. Am. Chem. Soc. 1948, 70, 2967. https://doi.org/10.1021/ja01189a040
  23. Queen, A. Can. J. Chem. 1967, 45, 1619. https://doi.org/10.1139/v67-264
  24. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 968.
  25. Kivinen, A. In The Chemistry of Acyl Halides; Patai, S., Ed.; Interscience: New York, 1972; pp 198-200.
  26. D'Souza, M. J.; Mahon, B. P.; Kevill, D. N. Int. J. Mol. Sci. 2010, 11, 2597. https://doi.org/10.3390/ijms11072597
  27. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop. 1990, 17, 121.
  28. Kevill, D. N.; D'Souza, M. J. Cur. Org. Chem. 2010, 14, 1037. https://doi.org/10.2174/138527210791130505
  29. Dang, V. A.; Olofson, R. A.; Wolf, P. R.; Piteau, M. D.; Senet, J-P. G. J. Org. Chem. 1990, 55, 1847. https://doi.org/10.1021/jo00293a032
  30. Lee, Y. H.; Seong, M. H.; Lee, E. S.; Lee, Y. W.; Won, H.; Kyong, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2010, 31, 1209. https://doi.org/10.5012/bkcs.2010.31.5.1209

Cited by

  1. Correlation of the Rates of Solvolysis of i-Butyl Fluoroformate and a Consideration of Leaving-Group Effects vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12117806
  2. Application of the Extended Grunwald-Winstein Equation to the Solvolyses of Phenyl Methanesulfonyl Chloride in Aqueous Binary Mixtures vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1897
  3. Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2955
  4. Correlation of the rates of solvolysis of tert-butyl chlorothioformate and observations concerning the reaction mechanism vol.3, pp.3, 2012, https://doi.org/10.5155/eurjchem.3.3.267-272.624
  5. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters vol.14, pp.4, 2013, https://doi.org/10.3390/ijms14047286
  6. Influence of Sulfur for Oxygen Substitution in the Solvolytic Reactions of Chloroformate Esters and Related Compounds vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151018310
  7. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates vol.16, pp.12, 2015, https://doi.org/10.3390/ijms160510601
  8. Correlation of the Rates of Solvolysis of Phenyl Fluorothionoformate vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1268
  9. Correlation of the Rates of Solvolysis of 1- and 2-Naphthyl Chloroformates Using the Extended Grunwald-Winstein Equation vol.32, pp.7, 2010, https://doi.org/10.5012/bkcs.2011.32.7.2413
  10. Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions vol.33, pp.11, 2010, https://doi.org/10.5012/bkcs.2012.33.11.3657
  11. Application of the Extended Grunwald-Winstein Equation to the Solvolyses of 4-(Chlorosulfonyl)biphenyl vol.61, pp.1, 2010, https://doi.org/10.5012/jkcs.2017.61.1.25
  12. Rate and Product Studies with 1-Adamantyl Chlorothioformate under Solvolytic Conditions vol.22, pp.14, 2021, https://doi.org/10.3390/ijms22147394