References
- Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357. https://doi.org/10.1126/science.1059820
- Hakomori, S. Glycoconjugate J. 2004, 21, 125. https://doi.org/10.1023/B:GLYC.0000044844.95878.cf
- Sacchettini, J. C.; Baum, L. G.; Brewer, C. F. Biochemistry 2001, 40, 3009. https://doi.org/10.1021/bi002544j
- Monsigny, M.; Mayer, R.; Roche, A. C. Carbohydr. Lett. 2000, 4, 35.
- Feizi, T. Glycoconjugate J. 2001, 17, 553. https://doi.org/10.1023/A:1011022509500
- Seeberger, P. H.; Werz, D. B. Nature 2007, 446, 1046. https://doi.org/10.1038/nature05819
- Jelinek, R.; Kolusheva, S. Chem. Rev. 2004, 104, 5987. https://doi.org/10.1021/cr0300284
- Slovin, S. F.; Keding, S. J.; Ragupathi, G. Immunol. Cell Biol. 2005, 83, 418. https://doi.org/10.1111/j.1440-1711.2005.01350.x
- Liang, P. H.; Wu, C. Y.; Greenberg, W. A.; Wong, C. H. Curr. Opin. Chem. Biol. 2008, 12, 86. https://doi.org/10.1016/j.cbpa.2008.01.031
- Gruner, S. A. W.; Locardi, E.; Lohof, E.; Kessler, H. Chem. Rev. 2002, 102, 491. https://doi.org/10.1021/cr0004409
- Meutermans, W.; Le, G. T.; Becker, B. ChemMedChem 2006, 1, 1164. https://doi.org/10.1002/cmdc.200600150
- Ernst, B.; Magnani, J. L. Nat. Rev. Drug Discov. 2009, 8, 661. https://doi.org/10.1038/nrd2852
- Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
- Mamidyala, S. K.; Finn, M. G. Chem. Soc. Rev. 2010, 39, 1252. https://doi.org/10.1039/b901969n
- Lee, L. V.; Mitchell, M. L.; Huang, S. J.; Fokin, V. V.; Sharpless, K. B.; Wong C. H. J. Am. Chem. Soc. 2003, 125, 9588. https://doi.org/10.1021/ja0302836
- Wilkinson, B. L.; Bornaghi, L. F.; Houston, T. A.; Innocenti, A.; Vullo, D.; Supuran C. T.; Poulsen S.-A. J. Med. Chem. 2007, 50, 1651. https://doi.org/10.1021/jm061320h
- Kajimoto, T.; Node, M. Synthesis 2009, 19, 3179.
- Lin, L.; Shen, Q.; Chen, G. R.; Xie, J. Bioorg. Med. Chem. 2008, 16, 9757. https://doi.org/10.1016/j.bmc.2008.09.066
- Deng, Q.; Zheng, R.-R.; Ding, N.-N.; He, X.-P.; Chen, G.-R. Bull. Korean Chem. Soc. 2010, 31, 1055. https://doi.org/10.5012/bkcs.2010.31.04.1055
- Caddick, S.; Fitzmaurice, R. Tetrahedron 2009, 65, 3325. https://doi.org/10.1016/j.tet.2009.01.105
- Kappe, C. O.; Van der Eycken, E. Chem. Soc. Rev. 2010, 39, 1280. https://doi.org/10.1039/b901973c
- Xue, J.-L.; Yang, J.-W.; Deng, Q.; He, X.-P.; Chen, G.-R. Bull. Korean Chem. Soc. 2010, 31, 1825. https://doi.org/10.5012/bkcs.2010.31.7.1825
- Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207. https://doi.org/10.1021/cr9001462
- For a very recent example, see: Dedola, S.; Hughes, D. L.; Nepogodiev, S. A.; Rejzek, M.; Field, R. A. Carbohydr. Res. 2010, 345, 1123. https://doi.org/10.1016/j.carres.2010.03.041
- Zhang, S.; Zhang, Z. Y. Drug Discovery Today 2007, 12, 373. https://doi.org/10.1016/j.drudis.2007.03.011
- Shrestha, S.; Bhattarai, B. R.; Lee, K.-H.; Cho, H. Bioorg. Med. Chem. 2007, 15, 6535. https://doi.org/10.1016/j.bmc.2007.07.010
- Shrestha, S.; Lee, K.-H.; Cho, H. Bull. Korean Chem. Soc. 2004, 25, 1303. https://doi.org/10.5012/bkcs.2004.25.9.1303
- Seo, C.; Sohn, J. H.; Oh, H.; Kim, B. Y.; Ahn, J. S. Bioorg. Med. Chem. Lett. 2009, 19, 6095. https://doi.org/10.1016/j.bmcl.2009.09.025
- Mereyala, H. B.; Gurrala, S. R. Carbohydr. Res. 1998, 307, 351. https://doi.org/10.1016/S0008-6215(97)10104-5
- Zhang, W.; Hong, D.; Zhou, Y.-Y.; Zhang, Y.-N.; Shen, Q.; Li, J.-Y.; Hu, L.-H.; Li, J. Biochim. Biophys. Acta 2006, 1760, 1505. https://doi.org/10.1016/j.bbagen.2006.05.009
- Shi, L.; Yu, H. P.; Zhou, Y. Y.; Du, J. Q.; Shen, Q.; Li, J. Y.; Li, J. Acta Pharmacol. Sin. 2008, 29, 278. https://doi.org/10.1111/j.1745-7254.2008.00737.x
- Vintonyak, V. V.; Antonchick, A. P.; Rauh, D.; Waldmann, H. Curr. Opin. Chem. Biol. 2009, 13, 272-283. https://doi.org/10.1016/j.cbpa.2009.03.021
Cited by
- -Glycoside Hybrids via Click Chemistry as Novel PTP1B Inhibitors vol.29, pp.6, 2011, https://doi.org/10.1002/cjoc.201190228
- Microwave-assisted construction of triazole-linked amino acid–glucoside conjugates as novel PTP1B inhibitors vol.35, pp.3, 2011, https://doi.org/10.1039/c0nj00835d
- ChemInform Abstract: Microwave-Accelerated Click Chemistry: Expeditious Synthesis of Novel Triazole-Linked Salicylic β-D-O-Glycosides with PTP1B Inhibitory Activity. vol.42, pp.13, 2011, https://doi.org/10.1002/chin.201113200
- Bidentate Inhibitors of Protein Tyrosine Phosphatases vol.20, pp.14, 2014, https://doi.org/10.1089/ars.2013.5710
- Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry vol.32, pp.3, 2010, https://doi.org/10.5012/bkcs.2011.32.3.1000
- Creation of 3,4-bis-triazolocoumarin–sugar conjugates via flourogenic dual click chemistry and their quenching specificity with silver(I) in aqueous media vol.67, pp.19, 2010, https://doi.org/10.1016/j.tet.2011.03.068
- Disclosing the distinct interfacial behaviors of structurally and configurationally diverse triazologlycolipids vol.346, pp.11, 2010, https://doi.org/10.1016/j.carres.2011.04.038
- Click to a focused library of benzyl 6-triazolo(hydroxy)benzoic glucosides: Novel construction of PTP1B inhibitors on a sugar scaffold vol.46, pp.9, 2010, https://doi.org/10.1016/j.ejmech.2011.06.025
- CuAAC Click Chemistry Accelerates the Discovery of Novel Chemical Scaffolds as Promising Protein Tyrosine Phosphatases Inhibitors vol.19, pp.15, 2010, https://doi.org/10.2174/092986712800269245
- Multifunctional Molecular Therapeutic Agent for Targeted and Controlled Dual Chemo- and Photodynamic Therapy vol.63, pp.15, 2010, https://doi.org/10.1021/acs.jmedchem.0c00893