DOI QR코드

DOI QR Code

Heterocyclic Systems Containing Bridgehead Nitrogen Atom:Synthesis and Evaluation of Biological Activity of Imidazo[2,1-b]-1,3,4-thiadiazolo [2,3-c]-s-triazoles, s-Triazolo[3,4-b]-1,3,4-thiadiazolo[3,2-b]imidazo[4,5-b]quinoxaline and bis-(s-Triazolo[3,4-b]-1,3,4-thiadiazolo[3,2-b][imidazo[4,5-b]-cyclohexane]-5a,6a-diene)

  • Kumar, Parvin (Chemistry Department, Guru Nanak Khalsa P G College) ;
  • Kuamr, Ashwani (Department of Pharmaceutical Sciences, Guru Jambheshwar University Science & Technology) ;
  • Mohan, Late Jag (Department of chemistry, M D University) ;
  • Makrandi, J.K. (Department of chemistry, M D University)
  • Received : 2010.05.03
  • Accepted : 2010.09.15
  • Published : 2010.11.20

Abstract

Condensation of 4-amino-5-mercapto-3-($\alpha$-naphthyl)-s-triazole (1) with cyanogen bromide gives 6-amino-3-($\alpha$-naphthyl)-s-triazolo[3,4-b]-1,3,4-thiadiazole (2) which on condensation with chloranil yields 3,9-di-($\alpha$-naphthyl)-6,14-dioxo-bis-(s-triazolo[3,4-b]-1,3,4-thiadiazolo[3,2-b]imidazo[4,5-b]cyclohexane]-5a,6a-diene) (3). 3-($\alpha$-naphthyl)-s-triazolo[3,4-b]-1,3,4-thiadiazolo[3,2-b]imidazo[4,5-b]quinoxaline (4) is obtained by a similar condensation of (2) with 2,3-dichloroquinoxaline. The reaction of (2) with $\alpha$-haloketones followed by bromination affords 7-aryl-3-($\alpha$-naphthyl)-imidazo[2,1-b]-1,3,4-thiadiazolo[2,3-c]-s-triazoles (5) and their 6-bromo analogues 6 respectively. The structures of all newly synthesized compounds were established on the basis of elemental analyses, IR, $^1H$-NMR. The antibacterial and antifungal activities of all newly synthesized compounds have also been evaluated.

Keywords

References

  1. Rollas, S.; Kalyoncuoglu, N.; Sur-Altiner, D.; Yegenoglu, Y. Pharmazie 1993, 48, 308.
  2. Sharma, S.; Gangal, S.; Rauf, A.; Zahin, M. Arch. Pharm. Chem. Life Sci. 2008, 341, 714. https://doi.org/10.1002/ardp.200800005
  3. Turan-Zitouni, G.; Kaplancikli, Z. A.; Yildiz, M. T.; Chevallet, P.; Kaya, D. Eur. J. Med. Chem. 2005, 40, 607. https://doi.org/10.1016/j.ejmech.2005.01.007
  4. Demirbas, N.; Karaoglu, S. A.; Demirbas, A.; Sanak, K. Eur. J. Med. Chem. 2004, 39, 793. https://doi.org/10.1016/j.ejmech.2004.06.007
  5. Demirbas, N.; Demirbas, A.; Alpay Karaoglu, S.; Celik, E. Arkivoc 2005, i, 75.
  6. Kane, J. M.; Baron, B. M.; Dudley, M. W.; Sorensen, S. M.; Staeger, M. A.; Millar, F. P. J. Med. Chem. 1990, 33, 2772. https://doi.org/10.1021/jm00172a015
  7. Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2004, 14, 6057. https://doi.org/10.1016/j.bmcl.2004.09.072
  8. Holla, B. S.; Veerendra, B.; Shivananada, M. K.; Pujari, B. Eur. J. Med. Chem. 2003, 38, 759. https://doi.org/10.1016/S0223-5234(03)00128-4
  9. Tozkoparan, B.; Kupeli, E.; Yesilada, E.; Ertan, M. Bioorg. Med. Chem. 2007, 15, 1808. https://doi.org/10.1016/j.bmc.2006.11.029
  10. Holla, B. S.; Veerendra, B.; Shivananda, M. K.; Poojary, B. Eur. J. Med. Chem. 2003, 38, 759. https://doi.org/10.1016/S0223-5234(03)00128-4
  11. Abdel-Aal, M. T.; El-Sayed, W. A.; El-Kosy, S. M.; El-Ashry, E. S. H. Arch. Pharm. Chem. Life Sci. 2008, 341, 307 and references cited therein. https://doi.org/10.1002/ardp.200700154
  12. Chai, B.; Qian, X.; Cao, S.; Liu, H.; Song, G. Arkivoc 2003, ii, 141.
  13. Modzelewska-Banachiewicz, B.; Banachiewicz, J.; Chodkowska, A.; Jagiello-Wojtowicz, E.; Mazur, L. Eur. J. Med. Chem. 2004, 39, 873-877. https://doi.org/10.1016/j.ejmech.2004.07.002
  14. Kadi, A. A.; El-Brollosy, N. R.; Al-Deeb, O. A.; Habib, E. E.; Ibrahim, T. M.; El-Emam, A. A. Eur. J. Med. Chem. 2007, 42, 235 and references cited therein. https://doi.org/10.1016/j.ejmech.2006.10.003
  15. Prakash Karegoudar, D.; Jagdeesh, P.; Mithun, A.; Manjathuru, M.; Boja, P.; Bantwal, S. H. European Journal of Medicinal Chemistry 2008, 43, 808 and references cited therein. https://doi.org/10.1016/j.ejmech.2007.06.026
  16. Solak, N.; Rollas, S. Arkivoc 2006, xii, 173 and references cited therein.
  17. Foroumadi, A.; Emami, S.; Pournourmohammadi, S.; Kharazmi, A.; Shafiee, A. Eur. J. Med. Chem. 2005, 40, 1346. https://doi.org/10.1016/j.ejmech.2005.07.002
  18. Kimura, T.; Takase, Y.; Hayashi, K.; Tanaka, H.; Ohtsuka, I.; Saeki, T.; Kogushi, M.; Yamada, T.; Fujimori, T.; Saitou, I.; Akasaka, K. J. Med. Chem. 1993, 36, 1630. https://doi.org/10.1021/jm00063a013
  19. Kumar, P. Chinese J. Chem. 2010, 28, 250 and references cited therein. https://doi.org/10.1002/cjoc.201090061
  20. Gilchrist, T. L. Heterocyclic Chemistry; Longman Scientific & Technical: London, 1991; p 328.
  21. Kumar, P.; Mohan, J.; Makrandi, J. K. Indian J. Heterocycl. Chem. 2007, 17, 79.
  22. Kumar, P.; Mohan, J.; Makrandi, J. K. Indian J. Chem. 2007, 46B, 1883.
  23. Dhaka, K. S.; Mohan, J.; Chadha, V. K.; Pujari, H. K. Indian J. Chem. 1974, 12B, 287.
  24. ChemAxon Ltd, 1998-2008; http://www.chemaxon.com/marvin.
  25. Paudler, W. W.; Kunder, J. E. J. Org. Chem. 1966, 31, 809. https://doi.org/10.1021/jo01341a038
  26. National Committee for Clinical Laboratory Standards (NCCLS), M7-A3, 13(25), Willanova, 1993; PA, USA.
  27. McFarland, J. J. Am. Med. Assoc. 1907, 14, 1176.
  28. Lorian, V. Antibiotics in Laboratory Medicine, 2nd ed.; Williams & Wilkins: London, 1986; p 116.
  29. Mohan, J.; Anjaneyulu, G. S. R.; Verma, P.; Yamini, K. V. S. Indian J. Chem. 1990, 29B, 88.

Cited by

  1. ChemInform Abstract: Heterocyclic Systems Containing Bridgehead Nitrogen Atom: Synthesis and Evaluation of Biological Activity of Imidazo[2,1-b]-1,3,4-thiadiazolo[2,3-c]-s-triazoles, s-Triazolo[3,4-b]-1,3,4-thiadiazolo[3,2-b]imidazo[4,5-b]quinoxaline and vol.42, pp.13, 2011, https://doi.org/10.1002/chin.201113114
  2. Solvent-Free One Pot Synthesis of 2-aryl/Heteroarylbenzothiazoles Using Hypervalent Iodine (III) Reagents vol.49, pp.5, 2012, https://doi.org/10.1002/jhet.962
  3. ]-[1,2,4]-triazoles pp.0022152X, 2013, https://doi.org/10.1002/jhet.1600
  4. Green synthesis of quinoxaline derivatives usingp-dodecylbenzensulfonic acid as a surfactant-type Bronsted acid catalyst in water vol.5, pp.2, 2010, https://doi.org/10.1080/17518253.2011.606849
  5. In silico design of diacylglycerol acyltransferase-1 (DGAT1) inhibitors based on SMILES descriptors using Monte-Carlo method vol.30, pp.8, 2019, https://doi.org/10.1080/1062936x.2019.1629998
  6. Nucleobase sequence based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method vol.38, pp.11, 2020, https://doi.org/10.1080/07391102.2019.1656109