DOI QR코드

DOI QR Code

Gas-phase Dehydration of Glycerol over Supported Silicotungstic Acids Catalysts

  • Kim, Yong-Tae (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Jung, Kwang-Deog (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Park, Eun-Duck (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University)
  • Received : 2010.08.17
  • Accepted : 2010.09.14
  • Published : 2010.11.20

Abstract

The gas-phase dehydration of glycerol to acrolein was carried out over 10 wt % HSiW catalysts supported on different supports, viz. $\gamma-Al_2O_3$, $SiO_2-Al_2O_3$, $TiO_2$, $ZrO_2$, $SiO_2$, AC, $CeO_2$ and MgO. The same reaction was also conducted over each support without HSiW for comparison. Several characterization techniques, $N_2$-physisorption, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), the temperature-programmed desorption of ammonia ($NH_3$-TPD), temperature-programmed oxidation (TPO) with mass spectroscopy and CHNS analysis were employed to characterize the catalysts. The glycerol conversion generally increased with increasing amount of acid sites. Ceria showed the highest 1-hydroxyacetone selectivity at $315^{\circ}C$ among the various metal oxides. The supported HSiW catalyst showed superior catalytic activity to that of the corresponding support. Among the supported HSiW catalysts, HSiW/$ZrO_2$ and HSiW/$SiO_2-Al_2O_3$ showed the highest acrolein selectivity. In the case of HSiW/$ZrO_2$, the initial catalytic activity was recovered after the removal of the accumulated carbon species at $550^{\circ}C$ in the presence of oxygen.

Keywords

References

  1. Pagliaro, M.; Rossi, M. The Future of Glycerol: New Uses of a Versatile Raw Material; The Royal Society of Chemistry: Cambridge, 2008.
  2. Katryniok, B.; Paul, S.; Capron, M.; Dumeignil, F. ChemsSusChem 2009, 2, 719. https://doi.org/10.1002/cssc.200900134
  3. Bettahar, M. M.; Costentin, G.; Savary, L.; Lavalley, J. C. Appl. Catal. A : Gen. 1996, 145, 1. https://doi.org/10.1016/0926-860X(96)00138-X
  4. Waldmann, H.; Petru, F. Chem. Ber. 1950, 83, 287. https://doi.org/10.1002/cber.19500830317
  5. Groll, H. P. A. US 2,042,224 1934.
  6. Freund, E. US 1,672,378 1928.
  7. Hoyt, H. E.; Manninen, T. H. US 2,558,520 1951.
  8. Schering-Kahlbaum, A. G. FR 695,931 1930.
  9. Neher, A.; Haas, T.; Arntz, D.; Klenk, H.; Girke, W. US 5,387,720 1995.
  10. Yang, L.; Joo, J. B.; Kim, Y. J.; Oh, S.; Kim, N. D.; Yi, J. Korean J. Chem. Eng. 2008, 25, 1014. https://doi.org/10.1007/s11814-008-0164-5
  11. Dubois, J. L.; Duquenne, C.; Holderich, W. US 7,396,962 2008.
  12. Nimlos, M. R.; Blanksby, S. J.; Qian, X.; Himmel, M. E.; Johnson, D. K. J. Phys. Chem. A 2006, 110, 6145. https://doi.org/10.1021/jp060597q
  13. Liu, Q.; Zhang, Z.; Du, Y.; Li, J.; Yang, X. Catal. Lett. 2009, 127, 419. https://doi.org/10.1007/s10562-008-9723-y
  14. Suprun, W.; Lutecki, M.; Haber, T.; Papp, H. J. Mol. Catal. A: Chem. 2009, 309, 71. https://doi.org/10.1016/j.molcata.2009.04.017
  15. Wang, F.; Dubois, J. L.; Ueda, W. J. Catal. 2009, 268, 260. https://doi.org/10.1016/j.jcat.2009.09.024
  16. Wang, F.; Dubois, J. L.; Ueda, W. Appl. Catal. A : Gen. 2010, 376, 25. https://doi.org/10.1016/j.apcata.2009.11.031
  17. Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q. Green Chem. 2007, 9, 1130. https://doi.org/10.1039/b702200j
  18. Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q. J. Catal. 2007, 250, 342. https://doi.org/10.1016/j.jcat.2007.06.016
  19. Ulgen, A.; Hoelderich, W. Catal. Lett. 2009, 131, 122. https://doi.org/10.1007/s10562-009-9923-0
  20. Tsukuda, E.; Sato, S.; Takahashi, R.; Sodesawa, T. Catal. Commun. 2007, 8, 1349. https://doi.org/10.1016/j.catcom.2006.12.006
  21. Atia, H.; Armbruster, U.; Martin, A. J. Catal. 2008, 258, 71. https://doi.org/10.1016/j.jcat.2008.05.027
  22. Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q. Green Chem. 2008, 10, 1087. https://doi.org/10.1039/b805373a
  23. Ning, L.; Ding, Y.; Chen, W.; Gong, L.; Lin, R.; Lü, Y.; Xin, Q. Chin. J. Catal. 2008, 29, 212. https://doi.org/10.1016/S1872-2067(08)60026-1
  24. Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q. Appl. Catal. A: Gen. 2009, 353, 213. https://doi.org/10.1016/j.apcata.2008.10.040
  25. Cheng, L.; Ye, X. P. Catal. Lett. 2009, 130, 100. https://doi.org/10.1007/s10562-009-9887-0
  26. Alhanash, A.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal. A : Gen. 2010, 378, 11. https://doi.org/10.1016/j.apcata.2010.01.043
  27. Corma, A.; Huber, G. W.; Sauvanaud, L.; O’Connor, P. J. Catal. 2008, 257, 163. https://doi.org/10.1016/j.jcat.2008.04.016
  28. Yoda, E.; Ootawa, A. Appl. Catal. A: Gen. 2009, 360, 66. https://doi.org/10.1016/j.apcata.2009.03.009
  29. Kim, Y. T.; Jung, K. D.; Park, E. D. Micropor. Mesopor. Mat. 2010, 131, 28. https://doi.org/10.1016/j.micromeso.2009.11.037
  30. Jia, C. J.; Liu, Y.; Schmidt, W.; Lu, A.-H.; Schüth, F. J. Catal. 2010, 269, 71. https://doi.org/10.1016/j.jcat.2009.10.017
  31. Pathak, K.; Reddy, K. M.; Bakhshi, N. N.; Dalai, A. K. Appl. Catal. A : Gen. 2010, 372, 224. https://doi.org/10.1016/j.apcata.2009.10.036
  32. Kim, Y. T.; Jung, K. D.; Park, E. D. Appl. Catal. A : Gen., submitted.
  33. Busca, G. Chem. Rev. 2007, 107, 5366. https://doi.org/10.1021/cr068042e
  34. Kozhevnikov, I. V. Catalysts for fine chemical synthesis volume 2 catalysis by polyoxometalates, John wiley & sons, England, 2002.
  35. Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171. https://doi.org/10.1021/cr960400y
  36. Pizzio, L. R.; Blanco, M. N. Micropor. Mesopor. Mat. 2007, 103, 40. https://doi.org/10.1016/j.micromeso.2007.01.036
  37. Miao, J. Y.; Yang, L. F.; Cai, J. X. Surf. Interface Anal. 1999, 28, 123. https://doi.org/10.1002/(SICI)1096-9918(199908)28:1<123::AID-SIA632>3.0.CO;2-6
  38. Clacens, J. M.; Pouillox, Y.; Barrault, J. Appl. Catal. A : Gen. 2002, 227, 181. https://doi.org/10.1016/S0926-860X(01)00920-6

Cited by

  1. Recent developments in dehydration of glycerol toward acrolein over heteropolyacids vol.114, pp.1, 2011, https://doi.org/10.1002/ejlt.201100047
  2. Effect of Al Content on the Gas-Phase Dehydration of Glycerol over Silica-Alumina-Supported Silicotungstic Acid Catalysts vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2369
  3. Regeneration of Silica-Supported Silicotungstic Acid as a Catalyst for the Dehydration of Glycerol vol.5, pp.7, 2012, https://doi.org/10.1002/cssc.201100635
  4. Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein vol.3, pp.8, 2013, https://doi.org/10.1021/cs400354p
  5. Vapor Phase Dehydration of Glycerol to Acrolein Over Phosphotungstic Acid Catalyst Supported on Niobia vol.144, pp.4, 2014, https://doi.org/10.1007/s10562-014-1204-x
  6. Silica-Supported Phosphotungstic Acid for Gas Phase Dehydration of Glycerol vol.38, pp.3, 2015, https://doi.org/10.1002/ceat.201400495
  7. Products and production routes for the catalytic conversion of seed oil into fuel and chemicals: a comprehensive review vol.58, pp.7, 2015, https://doi.org/10.1007/s11426-015-5397-7
  8. Heteropolycompounds as catalysts for biomass product transformations vol.58, pp.4, 2016, https://doi.org/10.1080/01614940.2016.1248721
  9. Oxidative Dehydration of Glycerol to Acrylic Acid over Vanadium-Substituted Cesium Salts of Keggin-Type Heteropolyacids vol.6, pp.5, 2016, https://doi.org/10.1021/acscatal.6b00213
  10. Dehydration of Lactic Acid: The State of The Art pp.21969744, 2017, https://doi.org/10.1002/cben.201700012
  11. Ce@STANPs/ZrO2 as Nanocatalyst for Multicomponent Synthesis of Isatin-Derived Imidazoles under Green Reaction Conditions vol.3, pp.8, 2010, https://doi.org/10.1021/acsomega.8b01043
  12. Dehydration of glycerol with silica-phosphate-supported copper catalyst vol.46, pp.7, 2010, https://doi.org/10.1007/s11164-020-04161-4