DOI QR코드

DOI QR Code

Synthesis and Characterization of Peripherally Ferrocene-modified Zinc Phthalocyanine for Dye-sensitized Solar Cell

  • An, Min-Shi (Department of Chemistry, University of Incheon) ;
  • Kim, Soon-Wha (Department of Chemistry, University of Incheon) ;
  • Hong, Jong-Dal (Department of Chemistry, University of Incheon)
  • Received : 2010.07.12
  • Accepted : 2010.09.14
  • Published : 2010.11.20

Abstract

Synthesis and structural characterization of peripherally ferrocene-substituted zinc phthalocyanine (ZnPc-Fc) were carried out for efficient far-red/near-IR performance in dye-sensitized nanostructured $TiO_2$ solar cells. Incorporating ferrocene into phthalocyanine strongly improved the dye solubility in polar organic solvents, and reduced surface aggregation due to the steric effect of bulky ferrocene substituents. The involvement of electron transfer reaction pathways between ferrocene and phthalocyanine in ZnPc-Fc was evidenced by completely quenched fluorescence from S1 state (< 0.08% vs ZnPc). Strong absorption bands at 542 and 682 nm were observed in the transient absorption spectroscopy of ZnPc-Fc in DMSO, which was excited at a 670 nm laser pulse with a 15 ps full width at half maximum. Also, the excited state absorption signals at 450 - 600 and 750 - 850 nm appeared from the formation of charge separated state of phthalocyanine's anion. The lifetime of the charge separate state in ZnPc-Fc was determined to be $170{\pm}8$ ps, which was almost 17 times shorter than that of the ZnPc.

Keywords

References

  1. Regan, B. O’.; Gratzel, M. Nature 1991, 353,737. https://doi.org/10.1038/353737a0
  2. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Bessho, T.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. https://doi.org/10.1021/ja052467l
  3. Leznoff, C. C., Lever, A. B. P., Eds.; Phthalocyanines: Properties and Applications; VCH: New York, 1993; Vol. 1, 1993; Vol. 2, 1993; Vol. 3, 1996; Vol. 4.
  4. Kamat, P. V. Chem. Rev. 1993, 93, 267. https://doi.org/10.1021/cr00017a013
  5. Gritzner, G.; Kuta, J. J. Pure. Appl. Chem. 1984, 56, 461. https://doi.org/10.1351/pac198456040461
  6. He, J.; Benko, G.; Korodi, F.; Polivka, T.; Lomoth, R.; Okermark, B.; Sun, L.; Hagfeldt, A.; Sundstrom, V. J. Am. Chem. Soc. 2002, 124, 4922. https://doi.org/10.1021/ja0178012
  7. Cid, J. J.; Yum, J. H.; Jang, S. R.; Nazeeruddin, M. K.; Martnez-Ferrero, E.; Palomares, E.; Ko, J.; Gratzel, M.; Torres, T. Angew. Chem. Int. Ed. 2007, 46, 8358. https://doi.org/10.1002/anie.200703106
  8. Seiwert, B.; Karst, U. Anal. Bioanal. Chem. 2008, 390, 181. https://doi.org/10.1007/s00216-007-1639-7
  9. Schlettwein, D.; Oekermann, T.; Yoshida, T.; Tochimoto, M.; Minoura, H. J. Electroanal. Chem. 2000, 481, 42. https://doi.org/10.1016/S0022-0728(99)00475-1
  10. Nevin, W. A.; Liu, W.; Lever, A. B. P. Can. J. Chem. 1987, 65, 855. https://doi.org/10.1139/v87-144
  11. Snow, A. W.; Jarvis, N. L. J. Am. Chem. Soc. 1984, 106, 4706. https://doi.org/10.1021/ja00329a012
  12. Schutte, W. J.; Sluyters-Rehbach, M.; Sluyters, J. H. J. Phys. Chem. 1993, 97, 6069.
  13. He, J.; Hagfeldt, A.; Lindquist, S.-E.; Grennberg, H.; Korodi, F.; Sun, L.; Okermark, B. Langmuir 2001, 17, 2743. https://doi.org/10.1021/la001651b
  14. Kazuya, K.; Mitsuhiko, M.; Akiharu, S.; Yoshiaki, K. Angew. Chem. 2005, 117, 4841. https://doi.org/10.1002/ange.200501199
  15. 5Zhou, Y.; Wang, Z.; Sugiura, K.; Sakata, Y. J. Journal of Porphyrins and Phthalocyanines 2001, 5, 523. https://doi.org/10.1002/jpp.358
  16. Kobayashi, N.; Lever, A. B. P. J. Am. Chem. Soc. 1987, 109, 7433. https://doi.org/10.1021/ja00258a030
  17. Kubo, M.; Mori, Y.; Otani, M.; Murakami, M.; Ishibashi, Y.; Yasuda, M.; Hosomizu, K.; Miyasaka, H.; Imahori, H.; Nakashima, S. J. Phys. Chem. A 2007, 111, 5136. https://doi.org/10.1021/jp071546b
  18. Shen, Y.; Wang, L.; Lu, Z.; Wei, Y.; Zhou, Q.; Mao, H.; Xu, H. Thin Solid Films 1995, 257, 144. https://doi.org/10.1016/0040-6090(94)06329-X
  19. Yanagi, H.; Chen, S.; Lee, P. A.; Nebesny, K. W.; Armstrong, N. R.; Fujishima, A. J. Phys. Chem. 1996, 100, 5447. https://doi.org/10.1021/jp952733p
  20. Schneider, G.; Wöhrle, D.; Spiller, W.; Stark, J.; Schulz-Ekloff, G. Photochem. Photobiol. 1994, 60, 333. https://doi.org/10.1111/j.1751-1097.1994.tb05112.x
  21. Spiller, W.; Kliesch, H.; Wöhrle, D.; Hackbarth, S.; Roeder, B. J. Porphyrins. Phthalocyanines 1998, 2, 145. https://doi.org/10.1002/(SICI)1099-1409(199803/04)2:2<145::AID-JPP60>3.0.CO;2-2
  22. Klessinger, M.; Michl, J. Excited States and Photochemistry of Organic Molecules; VCH: New York, 1995.
  23. Rodgers, M. A. J. Photosensitization; Moreno, G. R., Pottier, H. T., Truscott, G.,Eds.; Springer: Berlin, 1988.
  24. Hwang, I.-W.; Kamada, T.; Ahn, T. K.; Ko, D. M.; Nakamura, T.; Tsuda, A.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2004, 126, 16187. https://doi.org/10.1021/ja046241e

Cited by

  1. A New Unsymmetrical Zinc Phthalocyanine as Photosensitizers for Dye-sensitized Solar Cells vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1225
  2. Large-Scale Preparation of 1,1′-Ferrocenedicarboxylic Acid, a Key Compound for the Synthesis of 1,1′-Disubstituted Ferrocene Derivatives vol.32, pp.20, 2013, https://doi.org/10.1021/om4004972
  3. Synthesis, Characterization, and Electron-Transfer Processes in Indium Ferrocenyl-Containing Porphyrins and Their Fullerene Adducts vol.52, pp.16, 2013, https://doi.org/10.1021/ic401163y
  4. Probing the Electronic Properties of a Trinuclear Molecular Wire Involving Isocyanoferrocene and Iron(II) Phthalocyanine Motifs vol.52, pp.19, 2013, https://doi.org/10.1021/ic4011423
  5. Electrochemistry and Catalytic Properties for Dioxygen Reduction Using Ferrocene-Substituted Cobalt Porphyrins vol.53, pp.16, 2014, https://doi.org/10.1021/ic501210t
  6. Synthesis, Redox Properties, and Electronic Coupling in the Diferrocene Aza-dipyrromethene and azaBODIPY Donor–Acceptor Dyad with Direct Ferrocene−α-Pyrrole Bond vol.53, pp.9, 2014, https://doi.org/10.1021/ic500526k
  7. Tuning Electronic Structure, Redox, and Photophysical Properties in Asymmetric NIR-Absorbing Organometallic BODIPYs vol.54, pp.16, 2015, https://doi.org/10.1021/acs.inorgchem.5b00992
  8. Probing Electronic Communications in Heterotrinuclear Fe–Ru–Fe Molecular Wires Formed by Ruthenium(II) Tetraphenylporphyrin and Isocyanoferrocene or 1,1′-Diisocyanoferrocene Ligands vol.54, pp.22, 2015, https://doi.org/10.1021/acs.inorgchem.5b01614
  9. Synthesis and Charge-Transfer Dynamics in a Ferrocene-Containing Organoboryl aza-BODIPY Donor–Acceptor Triad with Boron as the Hub vol.54, pp.8, 2015, https://doi.org/10.1021/acs.inorgchem.5b00494
  10. Synthesis and Optical Characterization of a Zinc-phthalocyanine Derivative Exhibiting High Solubility in Nonpolar Solvents vol.53, pp.6, 2016, https://doi.org/10.12772/TSE.2016.53.379
  11. Ferrocene–BODIPYmerocyanine dyads: new NIR absorbing platforms with optical properties susceptible to protonation vol.53, pp.54, 2017, https://doi.org/10.1039/C7CC03332J
  12. Observation of the Strong Electronic Coupling in Near-Infrared-Absorbing Tetraferrocene aza-Dipyrromethene and aza-BODIPY with Direct Ferrocene−α- and Ferrocene−β-Pyrrole Bonds: Toward Molecular Machinery with Four-Bit Information Storage Capacity vol.56, pp.2, 2017, https://doi.org/10.1021/acs.inorgchem.6b02806
  13. Electronic Properties of Mono-Substituted Tetraferrocenyl Porphyrins in Solution and on a Gold Surface: Assessment of the Influencing Factors for Photoelectrochemical Applications vol.21, pp.1, 2014, https://doi.org/10.1002/chem.201404457
  14. Ferrocenyl Phthalocyanine as Donor in Non-Poly(3-hexylthiophen-2,5-diyl) Bulk Heterojunction Solar Cell vol.24, pp.27, 2018, https://doi.org/10.1002/chem.201801340
  15. Synthesis, characterization and electrochemistry of novel unsymmetrical zinc phthalocyanines sensitizer with extended conjugation vol.1022, pp.None, 2010, https://doi.org/10.1016/j.molstruc.2012.04.046
  16. Electrolyte-Free Dye-Sensitized Solar Cell with High Open Circuit Voltage Using a Bifunctional Ferrocene-Based Cyanovinyl Molecule as Dye and Redox Couple vol.37, pp.13, 2010, https://doi.org/10.1021/acs.organomet.8b00104