DOI QR코드

DOI QR Code

Biochemical and Biophysical Characterizations of the Interaction between Two PDZ Adapter Proteins NHERF and E3KARP in vitro

  • Hwang, Eun-Young (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeong, Mi-Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jang, Se-Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • Received : 2010.08.10
  • Accepted : 2010.09.14
  • Published : 2010.11.20

Abstract

NHERF ($Na^+/H^+$ exchanger regulatory factor) and E3KARP (NHE3 kinase A regulatory protein) play important roles in membrane targeting, trafficking and sorting of ion channels, transmembrane receptors and signaling proteins in many tissues. Each of these proteins contains two PDZ (PSD-95/Dlg-1/ZO-1) domains, which mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The interaction between NHERF and E3KARP was investigated by surface plasmon resonance spectroscopy (BIAcore), fluorescence measurement, His-tagged pull-down experiment, and size-exclusion column (SEC) chromatography. BIAcore experiments revealed that NHERF bound to E3KARP with an apparent $K_D$ of 7 nM. Fluorescence emission spectra of the NHERF-E3KARP complex suggested that the tight interaction between these proteins was accompanied by significant conformational changes in one or both. The CD spectra of NHERF and E3KARP show that the conformational changes of these proteins were dependent on pH and temperature. These results implicate that the NHERF-E3KARP complex allows intracellular signaling complexes to form through PDZ-PDZ interactions.

Keywords

References

  1. Fanning, A. S.; Anderson, J. M. J. Clin. Invest. 1999, 103, 767-772. https://doi.org/10.1172/JCI6509
  2. Bezprozvanny, I.; Maximov, A. Proc. Natl. Acad. Sci. USA 2001, 98, 787-789. https://doi.org/10.1073/pnas.98.3.787
  3. Brenman, J. E.; Chao, D. S.; Gee, S. H.; McGee, A. W.; Craven, S. E.; Santillano, D. R.; Wu, Z.; Huang, F.; Xia, H.; Peters, M. F.; Froehner, S. C.; Bredt, D. S. Cell 1996, 84, 757-767. https://doi.org/10.1016/S0092-8674(00)81053-3
  4. Lim, S.; Naisbitt, S.; Yoon, J.; Hwang, J.; Suh, P.; Sheng, M.; Kim, E. J. Biol. Chem. 1999, 274, 29510-29518. https://doi.org/10.1074/jbc.274.41.29510
  5. Daniels, D. L.; Cohen, A. R.; Anderson, J. M.; Brunger, A. T. Nat. Struct. Biol. 1998, 5, 317-325. https://doi.org/10.1038/nsb0498-317
  6. Tochio, H.; Zhang, Q.; Mandal, P.; Li, M.; Zhang, M. Nat. Struct. Biol. 1999, 6, 417-421. https://doi.org/10.1038/8216
  7. Kozlov, G.; Gehring, K.; Ekiel, I. Biochemistry 2000, 39, 2572-2580. https://doi.org/10.1021/bi991913c
  8. Hillier, B. J.; Christopherson, K. S.; Prehoda, K. E.; Bredt, D. S.; Lim, W. A. Science 1999, 284, 812-815. https://doi.org/10.1126/science.284.5415.812
  9. Karthikeyan, S.; Leung, T.; Birrane, G.; Webster, G.; Ladias, J. A. A. J. Mol. Biol. 2001, 308, 963-973. https://doi.org/10.1006/jmbi.2001.4634
  10. Karthikeyan, S.; Leung, T.; Ladias, J. A. A. J. Biol. Chem. 2001, 276, 19683-19686. https://doi.org/10.1074/jbc.C100154200
  11. Lamprecht, G.; Seidler, U. Am. J. Physiol. Renal Physiol Gastro-intest Liver 2006, 291, G766-G777. https://doi.org/10.1152/ajpgi.00135.2006
  12. Weinman, E. J.; Steplock, D.; Shenolikar, S. Kidney Int. 2001, 60, 450-454. https://doi.org/10.1046/j.1523-1755.2001.060002450.x
  13. Yun, C. H.; Lamprecht, G.; Forster, D. V.; Sidor, A. J. Biol. Chem. 1998, 273, 25856-25863. https://doi.org/10.1074/jbc.273.40.25856
  14. Zizak, M.; Lamprecht, G.; Steplock, D.; Tariq, N.; Shenolikar, S.; Donowitz, M.; Yun C. H.; Weinman, E. J. J. Biol. Chem. 1999, 274, 24753-24758. https://doi.org/10.1074/jbc.274.35.24753
  15. Short, D. B.; Trotter, R. W.; Reczek, D.; Kreda, S. M.; Bretscher, A.; Boucher, R. C.; Stutts, M. J.; Milgram, S. L. J. Biol. Chem. 1998, 273, 19797-19801. https://doi.org/10.1074/jbc.273.31.19797
  16. Hall, R. A.; Premont, R. T.; Chow, C. W.; Blitzer, J. T.; Pitcher, J. A.; Claing, A.; Stoffel, R. H.; Barak, L. S.; Shenolikar, S.; Weinman, E. J.; Grinstein, S.; Lefkowitz, R. J. Nature. 1998, 392, 626-630. https://doi.org/10.1038/33458
  17. Maudsley, S.; Zamah, A. M.; Rahman, N.; Blitzer, J. T.; Luttrell, L. M.; Lefkowitz, R. J.; Hall, R. A. Mol. Cell. Biol. 2000, 20, 8352-8363. https://doi.org/10.1128/MCB.20.22.8352-8363.2000
  18. Guerra, L.; Fanelli, T.; Favia, M.; Riccardi, S. M.; Busco, G.; Cardone, R. A.; Carrabino, S.; Weinman, E. J.; Reshkin, S. J.; Conese, M.; Casavola, V. J. Biol. Chem. 2005, 280, 40925-40933. https://doi.org/10.1074/jbc.M505103200
  19. Park, K. S.; Jeong, M. S.; Kim, J. H.; Jang, S. B. Protein Expression & Purification 2005, 40, 197-202. https://doi.org/10.1016/j.pep.2004.12.004
  20. Gerald, B. CD spectroscopy deconvolution, version 2.1 1997.
  21. Takahashi, Y.; Morales, F. C.; Kreimann, E. L.; Georgescu, M. M. EMBO J. 2006, 25, 910-920. https://doi.org/10.1038/sj.emboj.7600979
  22. Aronson, P. S.; Igarashi, P. Curr. Topics Membr. Transport 1986, 26, 57-75. https://doi.org/10.1016/S0070-2161(08)60726-1