DOI QR코드

DOI QR Code

The Effect of Coating Thickness on the Electrochemical Properties of a Li-La-Ti-O-coated Li[Ni0.3Co0.4Mn0.3]O2 Cathode

  • Lee, Hye-Jin (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong-Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • 투고 : 2010.08.19
  • 심사 : 2010.09.09
  • 발행 : 2010.11.20

초록

A $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode was modified by coating with Li-La-Ti-O, and the effect of the coating thickness on their electrochemical properties was studied. The thickness of the coating on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ was increased by increasing the wt % of the coating material. The rate capability of the Li-La-Ti-O-coated electrode was superior to that of the pristine sample. 1- and 2-wt %-coated samples showed considerable improvement in capacity retention at high C rates. However, the rate capability of a 5-wt %-coated sample decreased. All the coated samples showed a high discharge capacity and slightly improved cyclic performance under a high cut-off voltage (4.8 V) condition. Results of a storage test confirmed that the Li-La-Ti-O coating layer was effective in suppressing the dissolution of the transition metals as it offered protection from the attack of the acidic electrolyte. In particular, the 2- and 5-wt %-coated samples showed a better protection effect than the 1-wt %-coated sample.

키워드

참고문헌

  1. Cho, J.; Kim, Y. J.; Kim, T.-J.; Park, B. Angew. Chem. Int. Ed. Engl. 2001, 40, 3367. https://doi.org/10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
  2. Myung, S.-T.; Izumi, K.; Komaba, S.; Sun, Y.-K.; Yashiro, H.; Kumagai, N. Chem. Mater. 2005, 17, 3695. https://doi.org/10.1021/cm050566s
  3. Thackeray, M. M.; Johnson, C. S.; Kim, J.-S.; Lauzze, K. C.; Vaughey, J. T.; Dietz, N.; Abraham, D.; Hackney, S. A.; Zeltner, W.; Anderson, M. A. Electrochem. Commun. 2003, 5, 752. https://doi.org/10.1016/S1388-2481(03)00179-6
  4. Ryu, J. H.; Kim, S. B.; Park, Y. J. Bull. Korean Chem. Soc. 2009, 30, 657. https://doi.org/10.5012/bkcs.2009.30.3.657
  5. Myung, S.-T.; Izumi, K.; Komaba, S.; Yashiro, H.; Bang, H. J.; Sun, Y. K.; Kumagai, N. J. Phys. Chem. 2007, C111, 4061.
  6. Lee, H.; Kim, Y.; Hong, Y. S.; Kim, Y.; Kim, M. G.; Shin, N. -S.; Cho, J. J. Electrochem. Soc. 2006, 153, A781. https://doi.org/10.1149/1.2172567
  7. Ryu, K. S.; Lee, S. H.; Koo, B. K.; Lee, J. W.; Kim, K. M.; Park, Y. J. J. Appl. Electrochem. 2008, 38, 1385. https://doi.org/10.1007/s10800-008-9576-5
  8. Wu, Y.; Murugan, A. V.; Manthiram, A. J. Electrochemical. Soc. 2008, 155, A635. https://doi.org/10.1149/1.2948350
  9. Park, B.-C.; Kim, H.-B.; Myung, S.-T.; Amine, K.; Belharouak, I.; Lee, S.-M.; Sun, Y.-K. J. Power Sources. 2008, 178, 826. https://doi.org/10.1016/j.jpowsour.2007.08.034
  10. Ryu, K. S.; Lee, S. H.; Park, Y. J. Bull. Korean Chem. Soc. 2008, 29, 1737. https://doi.org/10.5012/bkcs.2008.29.9.1737
  11. Zheng, J. M.; Zhang, Z. R.; Wu, X. B.; Dong, Z. X.; Zhu, Z.; Yang, Y. J. Electrochemical. Soc. 2008, 155, A775. https://doi.org/10.1149/1.2966694
  12. Yun, S. H.; Park, K. S.; Park, Y. J. J. Power Sources. 2010, 195, 6108. https://doi.org/10.1016/j.jpowsour.2009.11.022
  13. Yun, S.; Park, Y. J. Bull. Korean Chem. Soc. 2010, 31, 355. https://doi.org/10.5012/bkcs.2010.31.02.355
  14. Inaguma, Y.; Chen, L.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta H.; Wakihara, M. Solid State Commun. 1993, 86, 689. https://doi.org/10.1016/0038-1098(93)90841-A
  15. Lee, J. M.; Kim, S. H.; Tak, Y. S.; Yoon, Y. S. J. Power Sources. 2006, 163, 173. https://doi.org/10.1016/j.jpowsour.2006.07.036
  16. Inaguma, Y.; Yu, J.; Shan, Y. J.; Itoh, M.; Nakamura, T. J. Electrochem. Soc. 1995, 142, L8. https://doi.org/10.1149/1.2043988
  17. Oguni M.; Inaguma Y.; Itoh, M.; Nakamura T. Solid State Commun. 1994, 91, 627. https://doi.org/10.1016/0038-1098(94)90560-6
  18. Choi, J.; Manthiram, A. J. Electrochemical. Soc. 2005, 152, A1714. https://doi.org/10.1149/1.1954927
  19. Ui, K.; Yamamoto, K.; Ishikawa, K.; Minami, T.; Takeuchi, K.; Itagaki, M.; Watanabe, K.; Koura N. J. Power Sources 2008, 183, 347. https://doi.org/10.1016/j.jpowsour.2008.04.063
  20. Saito, Y.; Rahman, M. K. J. Power Sources 2007, 174, 877 https://doi.org/10.1016/j.jpowsour.2007.06.223

피인용 문헌

  1. Lithium Lanthanum Titanium Oxides: A Fast Ionic Conductive Coating for Lithium-Ion Battery Cathodes vol.24, pp.14, 2012, https://doi.org/10.1021/cm300929r
  2. Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials vol.7, pp.20, 2017, https://doi.org/10.1002/aenm.201602888
  3. Improving the Structure Stability of LiNi0.8Co0.1Mn0.1O2 by Surface Perovskite-like La2Ni0.5Li0.5O4 Self-Assembl vol.11, pp.40, 2010, https://doi.org/10.1021/acsami.9b12595
  4. Understanding the Origin of the Ultrahigh Rate Performance of a SiO2-Modified LiNi0.5Mn1.5O4 Cathode for Lithium-Ion Batteries vol.2, pp.10, 2010, https://doi.org/10.1021/acsaem.9b01211